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What is an “agent”?

* In computer software, a “software agent” is [Wikipedia] “a
computer program that acts for a user or another program
in a relationship of agency”

e In artificial intelligence (Al), an “intelligent agent” is [also
Wikipedia] “an entity that perceives its environment, takes
actions autonomously to achieve goals, and may improve its
performance through machine learning or by
acquiring knowledge”

* An Al component, sensors, actuators, memory

See also: https://gist.github.com/simonw/beaa5f90133b30724c5cc1c4008d0654#response
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Related concept: An “embodied agent”
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The “sense-plan-act-learn” loop

* Initialize state and goals

e Repeat until termination:
* Sense: Gather observations from environment
* Plan: Evaluate goals and state, plan/select next action
* Act: Execute chosen action on environment
* Learn: Update internal state, memory, or model based on outcomes



Current excitement around agents is due to LLMs
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Many related ideas regarding agentic architecture
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A simple perspective o}

An LLM in a loop
with an objective
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“CACTUS: Chemistry Agent Connecting Tool Usage to Science”
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Read question and Utilize tool to
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Figure 1. General workflow of the CACTUS agent that details how the LLM interprets input to arrive at the correct tool to use to obtain an

answer. Starting from the user input, CACTUS follows a standard “Chain-of-thought” reasoning method with a Planning, Action, Execution, and
Observation phase to obtain an informed output.

https://pubs.acs.org/doi/pdf/10.1021/acsomega.4c08408
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Overview

* What is an “agent”?

* LLMs, foundation models, reasoning models
* Agents and scientific discovery

* Scientific Discovery Platforms

* Curriculum
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Traditional ML Foundation models
(E.g., Large Language Models: LLMs)
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Foundation models
(E.g., Large Language Models: LLMs)
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 Deliberative multi-step logic

 Self-consistency checks

e Slower but more accurate
inference



Graduate-Level Google-Proof Q&A test (GPQA), Diamond problems
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https://arxiv.org/pdf/2311.12022 https://epoch.ai/data/ai-benchmarking-dashboard
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Accelerating discovery in science

Extraction, integration and - Generative models automatically
reasoning with knowledge at scale - propose new hypotheses that
. expand the discovery space

Accelerated

Scientific

Robotic labs automate
experimentation and bridge
digital models and physical
testing

Tools help identify new
questions based on needs and

gaps in knowledge

Machine representation of Pattern and anomaly detection is
knowledge leads to new integrated with simulation and

hypotheses and questions experimentation to extract new

insights
https://doi.org/10.1038/s41524-022-00765-7
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The emergence of LLM-based agents for science

“Al agents are autonomous systems that can reason about tasks and
act to achieve goals by leveraging external tools and resources.

Modern Al agents are typically powered by large language models
(LLMs) connected to external tools or APIs.

They can perform reasoning, invoke specialized models, and adapt
based on feedback.

Agents differ from conventional “models” in important regards:
* They are interactive and adaptive

e Rather than returning fixed outputs, they can take multi-step actions,
integrate context, and support iterative human—Al collaboration.

e Users can interact with them through human language, substantially

reducing usage barriers for scientists.”
https://arxiv.org/pdf/2509.06917



https://arxiv.org/pdf/2509.06917

One agent or many?

* In principle, a single reasoning model (like a single human) can apply
a variety of different reasoning strategies, have specialized knowledge
on different topics, improve expertise over time, etc.

* In practice, it is common to create multiple agents (like a team of
people), e.g., for:
* Modularity (specialization, reuse, maintainability)
* Different roles (e.g., idea generator, idea critic, program generator, ...)
* Parallelism (run multiple copies of an agent to explore different ideas)
* Expanded capacity (e.g., larger LLM context)
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molecular and structural properties, host cell membrane
characteristics and intracellular pathways—knowledge that may be
gained by database/literature search, simulation, experiment




Example: A peptide expert " We want a model
(Prototyped with PubMed and ChatGPT) with deep expertise

: Query PubMed for ChatGPT :
feedstock !
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Arvind Ramanathan, Priyanka Setty, et al.

regarding peptides
and related topics/

A from PubMed that
ied peptide

Use ChatGPT to build hypotheses by
using retrieval-augmented generation: e.g.:

“Given A, on which organism is {peptide}
acting?”

We want to be able
to make millions of
such requests




Define other agents, also foundation model-powered
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Align proteins, predict
structure, rank results

Potential domain boundary
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Link agents into a flow

Query PubMed for | Align proteins, predict | Evaluate structures and '
ChatGPT feedstock structure, rank results fi/ter results '

\@J 103 \@Jﬁ

Knowledge Structure Evaluation
agent agent agent

We use Globus Flows to invoke individual agents, which query databases,
retrieve data, run simulations, run experiments, etc.

Arvind Ramanathan, Priyanka Setty, et al. https://globus.org



Link with HPC for computational evaluation

Query PubMed for | Align prote/ns predlct Evaluate structures and

ChatGPT feedstock | structure, rank results filter results
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Arvind Ramanathan, Priyanka Setty, et al.



Link with self-driving labs for experimental evaluation
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I'm here to assist you with any concerns you have
regarding wildfires. Is there a specific task you are
interested in?

| am a risk manager working with wildfire
near Las Vegas in the past 10 years.

A}

User Profile Module

Here is the plan......

A}

continue the conversaton

The data analysis shows...... Here are some
recommendations regarding your concens......

*ﬁﬁ{* Human Evaluatuon and Feedbacks by

w Domain Experts in Case Studies

Urban Planner Urban Wildfire Mitigation

Landcape Manager Ecosystem Fire Management

Homeowner Private Property Protection

Engineer Comprehensive Wildfire Impact
Front End

User Profile
Agent
Profession

Concern
Location and Time

Planning Agent
@ An action plan based on
user profile, including data
retrieval, literature review,

or recommendation
development

Conversation History

QD

Decision point:
need data retrieval?

Retrieve Data
climate projection and observational data

Summary Statistics

il |

Data Visualization

Fire Weather Index (FWI) from ClimRR

WFIGS Data for Recent Wildfire Trends

@ python

NAFSS Data for Fire History

Analyst Agent § Data Retrieval

Conversation History

Analyst Agent

No

Retrieved Context

Prompt Augmentation

Conversation History

Prompt Augmentation

QFT @

Retrieve Literature
Scientific literature on wildfire

Embedding Model
* all-MiniLM-L6-v2

= = Literature Search Dataset

+ Wildfire Corpus

+ Argonne's Community and
Infrastructure Adaptation to
Climate Change (CIACC) tool

=3
% Top-k Relevant Abstracts
Analyst Agent -

Evaluations by Both
Human Experts & LLMs

Correctness Relevance Entailment Accessibility

Back End

“MARSHA: multi-agent RAG system for hazard adaptation”

https://www.nature.com/articles/s44168-025-00254-1
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Table 2 User profile variations and literature search queries in Phase 2 of the WildfireGPT personalization ablation

study

Profession

Homeowner

Civil Engineer

Ecologist

Emergency
Manager

Power Grid
Manager

Primary Concern

Maximizing marketable
species

Ensuring structural and
infrastructural resilience

Maintaining biodiversity and

ecosystem services

Establishing defendable
space and evacuation
corridors

Maintaining transmission
line clearance and grid
resilience

Scope

Health and marketable
species

Drainage efficiency and
slope stability

Ecological resilience and
habitat connectivity

Emergency access and
response capabilities

Power distribution
reliability and access

https://www.nature.com/articles/s44168-025-00254-1

Search Query

“Strategies for managing forests to maintain
health, maximize marketable species, and
minimize wildfire risks in Virginia”

“Wildfire risks and climate change impacts on
forest management near Covington, VA;
Strategies for enhancing drainage efficiency and
slope stability; Structural resilience against
wildfires in forested areas”

“Wildfire management and ecological resilience
in forest ecosystems near Covington, VA”

“Effective forest management practices,
defendable space creation, evacuation
protocols, and property protection measures
against wildfires near Covington, VA”

“Effective strategies for vegetation
management, forest health maintenance, and
wildfire risk mitigation around power grids near
Covington, VA”
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“Empowering biomedical discovery with Al
agents”

https://doi.org/10.1016/j.cell.2024.09.022
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(A) By programming an LLM with the role, one
LLM-based agent, equipped with memory and
reasoning abilities, performs multimodal
perception and utilizes a range of tools, e.g., web
lab tools, to accomplish specified tasks.

(B—E) Leveraging Al agents equipped with diverse
roles, perception modules, tools, and domain
knowledge enables collaboration between agents
and scientists. This collaboration can adopt
various configurations, such as expert
consultation, debate, brainstorming, and
roundtable discussions.

(F) Multi-agent systems can establish a self-
driving laboratory wherein numerous agents
collaborate on multiple iterations of biological
research assisted by humans. Each cycle of
research encompasses the generation of
hypotheses, the design of experiments, the
execution of experiments both in silico and in
vitro, and the analysis of results.

https://doi.org/10.1016/j.cell.2024.09.022
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Computing agent utilizes computational
models as tools

Decision agent makes decisions in response to
given conditions

Database agent retrieves relevant information
from databases

Reasoning agent capable of direct reasoning
and reasoning with feedback

Expert agent provides professional consultation
based on reliable sources, such as domain
expertise, feedback from human experts, and
results of specific tools

Hypothesis agent capable of reflective learning
and reasoning to generate hypotheses

Planner agent devises plans for future actions

In silico/vitro agent uses tools in silico or in

vitro environment.
https://doi.org/10.1016/j.cell.2024.09.022
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https://arxiv.org/pdf/2407.10022

AtomAgents: Alloy design and discovery through physics-aware

multi-modal multi-agent artificial intelligence

Knowledge retrieval tool:
Retrieves knowledge from
external sources such as
papers, documents, tables,
etc.

Plot analyze tool:
Empowered by a multi-model

agent, this tool can analyze
plots and images and draw
conclusions from them.

Tool memory:

Planning tool: Sugeests a
detailed plan to solve the multi-
objective complex task.

Coding tool: Writes and
executes Python code to save
the data in desired format, e.g.
image.

The tool agents’
memory stores
the conversations
between agents.
After the task is
accomplished, a
summary of the
key results is
returned to the
core module.

executor coder

{ \ query

Computation tool: Computes
material properties from theory,
e.g. fracture toughness from
LEFM, or by performing atomistic
simulations, e.g. elastic constants,
surface energies, and Peierls
barrier.

Chat

Scientist

\ response

Core memory: The core agents’ memory stores the
conversations between the core agents, as well as
responses returned from the tools. This memory is
retained throughout the problem-solving process.

Core: Consists of a group of LLM-based Al agents that collaborate in a
dynamic environment to solve complex tasks, leveraged by the power
of various tools.
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Overview

* What is an “agent”?

* LLMs, foundation models, reasoning models
* Agents and scientific discovery

* Scientific Discovery Platforms

* Curriculum

* Class structure

* Argonne inference service



A Scientific Discovery Platform (SDP)
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Scientific Discovery Platform

An agentic Scientific Discovery Platform (SDP) is an integrated
environment that combines reasoning-capable Al with scientific and
engineering resources—such as literature collections, simulation codes,
experimental platforms, and knowledge bases—to accelerate the pace
of discovery.

Recent advances in large language models (LLMs) and related
technologies make it possible to build such platforms that can
automate key aspects of scientific work: synthesizing information from
the literature, generating and prioritizing hypotheses, designing and
executing protocols, running simulations or experiments, and
interpreting results.



Al-native Scientific Discovery Platform

Qy Goal: “Find catalysts that raise ethanol
Faradaic efficiency > 50% at -0.7 V RHE.”
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Al-native Scientific Discovery Platform

2

Reasoning

[ Memory Trust Iayer]

Vector query retrieves
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Materials Project surfaces
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Al-native Scientific Discovery Platform

a2 P
' Hypothesis: “Cu—Zn—Nx sites on N-doped

- graphene may stabilize *COH intermediate.”
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Al-native Scientific Discovery Platform

2 s
' Plan: “ElectroCat-FM screen, DFT compute,

‘lab synthesis + assays”
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Al-native Scientific Discovery Platform

6 mins
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Al-native Scientific Discovery Platform

7 mins

Reasoning
Core

Trust Iayer]

ElectroCat-FM.embed(surface),
predict(AG_CO*, AG_COH*) for 12 k

Thought-a
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Electrocatalysis Consortium



Al-native Scientific Discovery Platform

Run GNN-surrogate for adsorption
energies; prune to 300 candidates
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Al-native Scientific Discovery Platform

2

Reasoning
Core

Trust Iayer]

High-fidelity sims: send 30
candidates to DFT cluster (SLURM)
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Al-native Scientific Discovery Platform

2
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Trust Iayer]

Plan wet-lab assay for top 8
surfaces (CuZn-Gr, CuFe-Gr, ...)
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Al-native Scientific Discovery Platform

35 mns JEN

Approve
expensive ink?
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Al-native Scientific Discovery Platform
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Al-native Scientific Discovery Platform

2

Reasoning
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Al-native Scientific Discovery Platform
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- “Zn-rich sites promising”

Trust Iayer]

Generates 40 new Cu-Zn-S bifunctional
surfaces; loops back to surrogate
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Al-native Scientific Discovery Platform

2
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Robotic synthesis complete;
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Al-native Scientific Discovery Platform

Reasoning Trust layer ]

Further validation via surrogates
and experimental measurement
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Al-native Scientific Discovery Platform

g‘ _____________________________________ Candidate found:

- Faradaic efficiency = 47 % for CuZn-Gr-2.
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Al-native Scientific Discovery Platform

130 mins QRN
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https://agents4science.github.io

agents4science

Al Agents for Science

Class scheduled as CMSC 35370 for Autumn 2025. Please contact lan Foster with any questions.
Please see this draft curriculum.
NOTE: The class is currently at capacity. Please visit https://waitlist.cs.uchicago.edu to be added to the wait list.

An agentic Scientific Discovery Platform (SDP) is an integrated environment that combines reasoning-capable Al with scientific and
engineering resources—such as literature collections, simulation codes, experimental platforms, and knowledge bases—to accelerate
the pace of discovery. Recent advances in large language models (LLMs) and related technologies make it possible to build such
platforms that can automate key aspects of scientific work: synthesizing information from the literature, generating and prioritizing
hypotheses, designing and executing protocols, running simulations or experiments, and interpreting results.


https://agents4science.github.io/

Curriculum

1) Why Al agents for science?

Al agents and the sense-plan-act-learn loop. Scientific Discovery Platforms (SDPs): Al-
native systems that connect reasoning models with scientific resources.

2) Frontiers of Language Models

Surveys frontier reasoning models: general-purpose LLMs (GPT, Claude), domain-
specific foundation models (materials, bio, weather), and hybrids. Covers techniques
for eliciting better reasoning: prompting, chain-of-thought, retrieval-augmented
generation (RAG), fine-tuning, and tool-augmented reasoning.

3) Systems for Agents

Discusses architectures and frameworks for building multi-agent systems, with
emphasis on inter-agent communication, orchestration, and lifecycle management.

4) Retrieval Augmented Generation (RAG) and Vector Databases

Covers how to augment reasoning models with external knowledge bases, vector
search, and hybrid retrieval methods.



Curriculum

5) Tool Calling

Introduces methods for invoking external tools from reasoning models. Focus on
model context protocol (MCP), schema design, and execution management.

6) HPC Systems and Self Driving Labs

How SDPs connect to HPC workflows and experimental labs. Covers distributed
coordination, robotics, and federated agents.

7) Human—Al Workflows

Explores how scientists and agents collaborate: trust boundaries, interaction design,
and debugging.

8) Benchmarking and Evaluation
Frameworks for assessing agents and SDPs: robustness, validity, and relevance.



Curriculum

9) Failures and Safety
Examines why multi-agent systems fail and methods for safety and guardrails.

10) Case Studies

Case studies of SDPs in biology and materials.

11) Novelty and Plagiarism
Explores originality, credit, and the risks of plagiarism in Al-generated science.

12) Building Agents and Workflows

Pipelines, workflow composition, and self-improving systems.



Curriculum

13) Finetuning
Covers approaches to adapt agents with reinforcement learning and real-world training.

14) Responsible SDPs

Discusses ethical and policy dimensions: dual-use concerns, bias, carbon footprint, open science vs IP.

15) Scaling SDPs

Strategies for scaling: distributed compute, HPC, cloud-native orchestration. Covers resilience,
scheduling, and cost/energy considerations.

16) Automation in Practice

Demonstration of automation pipelines with monitoring, logging, and adaptive workflows. Emphasis on
debugging and error recovery.

17) Frontiers of SDPs

Explores frontiers: multi-agent collaboration, embodied co-scientists, integration with digital twins.
Students speculate on SDPs in 2030.



