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Curriculum
1) Why AI agents for science?

AI agents and the sense-plan-act-learn loop. Scientific Discovery Platforms (SDPs): AI-
native systems that connect reasoning models with scientific resources.

2) Frontiers of Language Models
Surveys frontier reasoning models: general-purpose LLMs (GPT, Claude), domain-
specific foundation models (materials, bio, weather), and hybrids. Covers techniques 
for eliciting better reasoning: prompting, chain-of-thought, retrieval-augmented 
generation (RAG), fine-tuning, and tool-augmented reasoning.

3) Systems for Agents
Discusses architectures and frameworks for building multi-agent systems, with 
emphasis on inter-agent communication, orchestration, and lifecycle management.

4) Retrieval Augmented Generation (RAG) and Vector Databases
Covers how to augment reasoning models with external knowledge bases, vector 
search, and hybrid retrieval methods.



From single-agent control → multi-agent 
orchestration → system-level runtime
• LangGraph
• Reframes agents as explicit graphs with state, giving you determinism and 

controllability for orchestration. 

• AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent 
Conversation
• Shows the conversation-centric paradigm for multi-agent apps (agents as 

conversants; tool use via messages). 

• AIOS: LLM Agent Operating System
• Treats agents as first-class OS-managed workloads with scheduling, 

memory/context, storage, and access control—a lifecycle and runtime view at 
system level; reports speedups from centralized resource management. 



Langchain: A tool for building (simple) agents

“Agents combine language models with tools to create systems that 
can reason about tasks, decide which tools to use, and iteratively 
work towards solutions.”

https://github.com/langchain-ai/langchain 

https://github.com/langchain-ai/langchain
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LangChain supports two major paradigms (1/2)

1) Chains – deterministic, linear workflows
• A Chain is a fixed pipeline of LLM calls, prompt templates, retrievers, or other 

components
• The developer defines the order and the control flow
• The model just fills in text or returns a result: It doesn’t decide what happens next

• The system runs a single pass: input → prompt → LLM → output
• There is no looping or tool selection



LangChain supports two major paradigms (2/2)
2) Agents – dynamic, ReAct-style loops
• An Agent wraps one or more tools; the model decides what to do next
• The LLM emits reasoning steps like:

• LangChain parses these, executes the matching Tool.func(), injects the “Observation” 
back into the prompt, and calls the model again
• This forms a Reason → Act → Observe → Repeat loop until model outputs Final 

Answer



Workflows: Systems where LLMs and tools are orchestrated through predefined code paths. 
Agents: Systems where LLMs dynamically direct their own processes and tool usage, maintaining 
control over how they accomplish tasks.

https://langchain-ai.github.io/langgraph/tutorials/workflows/ 
https://www.anthropic.com/engineering/building-effective-agents Workflows vs. agents 
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Workflows
Building block: The augmented LLM



Workflows
Prompt chaining

Decompose a task into a sequence of steps, where each LLM call processes the 
output of the previous one. You can add programmatic checks (see "gate” in the 
diagram) on any intermediate steps to ensure that the process is still on track.



Workflows
Routing

Routing classifies an input and directs it to a specialized followup task. Allows for 
separation of concerns, and building more specialized prompts. Otherwise, 
optimizing for one kind of input can hurt performance on others.



Workflows: Evaluator-optimizer
Routing

One LLM call generates a response while another provides evaluation and 
feedback in a loop



Built-in chains: e.g., “summarize chain”





Recall structure of a basic agent 

• Initialize state and goals
• Repeat until termination:
• Sense: Gather observations from environment
• Plan: Evaluate goals and state, plan/select next action
• Act: Execute chosen action on environment
• Learn: Update internal state, memory, or model based on outcomes

In sequence: call tool, invoke LLM, test for termination; repeat



Agents

Agents begin their work with either a command from, or interactive 
discussion with, the human user. 
Once the task is clear, agents plan and operate independently, potentially 
returning to the human for further information or judgement. 
During execution, agents gain “ground truth” from the environment at 
each step (such as tool call results or code execution) to assess progress. 
Agents can pause for human feedback at checkpoints or when 
encountering blockers. 



Agents 



ReAct loop with LangChain create-agent
ReAct frames an agent’s behavior as an interleaving of 

 thought à action à observation 

steps, where the model writes out its reasoning, picks 
a tool, sees the tool’s result, and then repeats.

LangChain create_agent() can be used to implement 
ReAct loops:

• It builds a graph-based agent runtime using 
LangGraph, where a graph consists of nodes (steps) 
and edges (connections) that define how your agent 
processes information. 

• The agent moves through this graph, executing 
nodes like the model node (which calls the model) 
& tools node (which executes tools)



The ReAct agent 

In a ReAct agent (AgentType.ZERO_SHOT_REACT_DESCRIPTION):
• The LLM generates Thought → Action → Action Input → Observation blocks
• Each Tool is advertised via its description
• The model chooses an action name (e.g., "Summarizer") and passes arguments 

(Action Input) as JSON-like text
• LangChain executes the corresponding Python function (func) and inserts the 

result into the next prompt as an “Observation”



Example: Summarize Document via ReAct Loop



Simplified system prompt:



Step 1: LLM “reasons” in text

Step 2: LangChain parser detects the “Action”



Step 3: Observation returned to LLM



ReAct loop with LangChain create-agent

Call 
get_weather 

function

What is the weather 
in San Fran?

Infor about 
weather

Does reply 
answer 
question?

ReAct frames an agent’s behavior as an interleaving of 

 thought à action à observation 

steps, where the model writes out its reasoning, picks 
a tool, sees the tool’s result, and then repeats.

LangChain create_agent() can be used to implement 
ReAct loops:

• It builds a graph-based agent runtime using 
LangGraph, where a graph consists of nodes (steps) 
and edges (connections) that define how your agent 
processes information. 

• The agent moves through this graph, executing 
nodes like the model node (which calls the model) 
& tools node (which executes tools)



https://docs.langchain.com/oss/python/langchain/overview 

A simple agent that can answer questions & call tools.

The agent has the following components:

• A language model (Claude 3.7 Sonnet)

• A simple tool (weather function)

• A basic prompt

• The ability to invoke it with messages

https://docs.langchain.com/oss/python/langchain/overview


“It’s sunny in San Francisco today! 
The skies are clear, and you can 
expect mild temperatures—around 
68°F (20°C). Enjoy the beautiful 
weather!”

“Today in Chicago, it’s sunny with clear skies and pleasant conditions. Enjoy your day outdoors!”



Query PubMed for ChatGPT 
feedstock

Recall “Peptide Expert” example

Repeat until answer is satisfactory:

• Retrieve abstracts A from PubMed that 
reference specified peptide 

• Use ChatGPT to build hypotheses:
   “Given A, on which organism is 

{peptide} acting?”

Arvind Ramanathan, Priyanka Setty, et al.

I.e.: query PubMed, and then call ChatGPT 



ReAct loop with LangChain create-agent

Query 
PubMed

re peptide 

On which organism 
does peptide act?

Docs that 
reference 
peptide

Hypotheses re action?
Good enough?

ReAct frames an agent’s behavior as an interleaving of 

 thought à action à observation 

steps, where the model writes out its reasoning, picks 
a tool, sees the tool’s result, and then repeats.

LangChain create_agent() can be used to implement 
ReAct loops:

• It builds a graph-based agent runtime using 
LangGraph, where a graph consists of nodes (steps) 
and edges (connections) that define how your agent 
processes information. 

• The agent moves through this graph, executing 
nodes like the model node (which calls the model) 
& tools node (which executes tools)



Build an agent with langchain

https://docs.langchain.com/oss/python/langchain/quickstart 

https://docs.langchain.com/oss/python/langchain/quickstart


1. Detailed system prompts
2. Create tools
3. Model configuration
4. Structured output
5. Conversational memory
6. Create and run the agent



1. Detailed system prompts
2. Create tools
3. Model configuration
4. Structured output
5. Conversational memory
6. Create and run the agent
Tools let a model interact with 
external systems by calling 
functions you define.

Tools can depend on runtime 
context and also interact with 
agent memory

Notice below how the 
get_user_location tool uses 
runtime context
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1. Detailed system prompts
2. Create tools
3. Model configuration
4. Structured output
5. Conversational memory
6. Create and run the agent





Summary of the example

Langchain allows our agent to:

• Perform tasks in sequence

• Understand context and remember conversations

• Use multiple tools intelligently

• Provide structured responses in a consistent format

• Handle user-specific information through context

• Maintain conversation state across interactions



LangGraph
“LangGraph is a low-level orchestration framework for building, managing, and deploying long-
running, stateful agents:

• Durable execution: Build agents that persist through failures and can run for extended 
periods, resuming from where they left off.

• Human-in-the-loop: Incorporate human oversight by inspecting and modifying agent state at 
any point.

• Comprehensive memory: Create stateful agents with both short-term working memory for 
ongoing reasoning and long-term memory across sessions.

• Debugging with LangSmith: Gain deep visibility into complex agent behavior with 
visualization tools that trace execution paths, capture state transitions, and provide detailed 
runtime metrics.

• Production-ready deployment: Deploy sophisticated agent systems confidently with scalable 
infrastructure designed to handle the unique challenges of stateful, long-running workflows.”

https://docs.langchain.com/oss/python/langgraph/overview 

https://docs.langchain.com/oss/python/langgraph/overview


ReAct-style “reasoning + 
acting + reflecting” loop in 
LangGraph

LangGraph lets you represent 
each step — “Reason”, “Act”, 
“Observe”, and “Reflect” — as 
nodes in a graph, connected by 
conditional edges that can loop 
until a termination condition is 
met.





AutoGen for multi-agent LLM frameworks



Multi-agent systems

Why multiple agents
• Partition expertise
• Run in parallel
• Contain risk
• Govern data



Why multiple agents? (in more detail)
• Specialization improves quality: Narrow, role-tuned agents outperform generalists on 

their slice
• Parallelism increases throughput: Independent agents work concurrently on sub-tasks
• Heterogeneous tools & environments: Different agents own different toolchains (HPC, 

LIMS, robots, DBs)
• Robustness & fault isolation: One agent can fail, restart, or be replaced without taking 

down the system
• Self-checking & consensus: Cross-agent critique, redundancy, and voting reduce error 

and bias
• Long-running workflow control: Persistent agents watch queues, schedule jobs, and 

resume after interruptions
• Governance, security, provenance: Data stays within the minimal-privilege agent; 

actions are auditable by role
• Scalability & cost control: Orchestrators spawn cheap/ephemeral workers; premium 

models only where needed



Challenges relating to multi-agent systems

• Creating agents
• Monitoring agents
• Inter-agent communication
• Monitoring agents/agent lifecycle



Perils of multiple agents – Why systems matter
Risk Area Description Mitigation

Coordination Chaos Agents loop, contradict, or 
amplify each other’s errors.

Limit turn count, add 
arbiter/watchdog agent.

Loss of Accountability Hard to trace which agent 
caused errors or bias.

Log every message & decision; 
require provenance.

Emergent Behavior Unpredictable dynamics—
agents invent new “protocols.”

Constrain roles and allowable 
message types.

Security & Safety Tool calls, code exec, or API use 
may cause harm.

Sandbox actions, validate outputs, 
human approval.

Human Factors Over-trust, confusion, or 
reduced oversight.

Keep humans in loop; clear UI for 
agent reasoning.

Resource/Cost Blow-up Many agents → exponential 
token and time costs.

Prune redundant roles; use 
shared memory or caching.



How systems can help
• Scheduling & Fairness: Coordinated access to LLM cores, memory, 

and tools (AIOS kernel)
• Isolation & Governance: Sandboxed agents with explicit privileges; 

traceable syscalls
• Reproducibility: Logged context snapshots and deterministic replay 

improve scientific auditability
• Safety & Oversight: Policy enforcement and user-intervention 

checkpoints before critical actions
• Scalability: From a handful of agents to thousands sharing compute, 

without chaos



“AutoGen: Enabling Next-Gen LLM 
Applications via Multi-Agent Conversation”
AutoGen2 allows developers to build LLM applications via multiple 
agents that can converse with each other to accomplish tasks. 

AutoGen agents are customizable, conversable, and can operate in 
various modes that employ combinations of LLMs, human inputs, and 
tools. 

Developers can also flexibly define agent interaction behaviors. 

Both natural language and computer code can be used to program 
flexible conversation patterns for different applications. 

https://arxiv.org/pdf/2308.08155 See also https://github.com/microsoft/agent-framework 

https://arxiv.org/pdf/2308.08155
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https://arxiv.org/pdf/2308.08155 

AutoGen

https://arxiv.org/pdf/2308.08155


AutoGen: Multi-agent conversation

AutoGen enables LLM-driven applications composed of multiple 
cooperating agents that communicate via structured conversations. Each 
agent can represent a specialized role — such as planner, executor, critic, 
or user proxy — and interact using natural language or code.

Conversation programming addresses computation (actions agents take 
to compute their response in a conversation) and control flow (order 
and conditions under which individual computations in the conversation 
are executed or evaluate)



AutoGen — Multi-Agent Conversation Framework

• Key Features
• Conversational Orchestration: Tasks are decomposed and coordinated 

through dialogue rather than fixed pipelines.
• Flexible Agent Roles: Agents can be LLMs, humans, or tool wrappers; each 

follows its own prompt and behavioral policy.
• Hybrid Programming: Conversations can mix natural language, Python, and 

tool calls — enabling “conversation-as-code.”
• Interoperability: Integrates easily with frameworks like LangChain and 

supports tools, APIs, or custom function calls.
• Architecture Overview
• Planner Agent: Defines goals, breaks down tasks, delegates subtasks.
• Executor / Assistant Agents: Perform the work using tools or reasoning.
• Critic Agent: Evaluates outputs, flags errors, and proposes refinements.
• User Proxy: Represents human intent or feedback.



Example: “ProtAgents: Protein discovery via large 
language model multi-agent collaborations”

• Planner: Determines what steps to take
• E.g., “design sequence à simulate 

  à evaluate”
• Assistant: Can call tools
• E.g. structure predictors, physics simulators

• Critic: Reviews results, spots errors, suggests refinements
• User proxy: Receives human instructions

The multi-agent system generates candidate sequences, simulates their 
mechanical / structural properties, critiques them, and iterates, aiming toward a 
design goal (e.g., a protein with a particular vibrational frequency or stiffness)

https://arxiv.org/pdf/2402.04268 

https://arxiv.org/pdf/2402.04268








AIOS: LLM Agent Operating System
• Proposes a comprehensive system-level architecture for serving large-language-

model-based agents
• introduces a kernel-based architecture that treats large language models (LLMs) 

and their associated tools as first-class operating-system resources.



The AIOS “Agent OS kernel”
• Instead of allowing each agent framework (e.g., LangChain, AutoGen, ReAct) to 

manage LLM calls, memory, and tools independently, AIOS provides a central “Agent 
OS kernel” responsible for:
• Scheduling and multiplexing access to LLM resources

• Memory and storage management for agent state and context

• Tool management with validation and concurrency control

• Access control and user-confirmation safeguards

• An SDK layer (API interface) allowing agent developers to invoke “AIOS syscalls” instead of 
managing resources directly

• A three-layer stack:
• Application layer: agent logic built via SDK APIs
• Kernel layer: AIOS kernel managing LLM, memory, tools, access
• Hardware layer: traditional OS and devices (CPU/GPU/memory)

• LLM cores are treated like CPU cores; agent requests become system calls; and  a 
scheduler orchestrates them







Evaluation

• Throughput: Up to 2.1× faster when multiple agents share limited 
GPU resources

• Latency: Reduced by scheduler control and pre-emptive LLM 
switching

• Scalability: Near-linear up to 2 000 agents

• Correctness: Context-switch BLEU / BERT = 1.0 → identical outputs 
after interruption





Alternative architectural patterns
Pattern Core Idea Best Used When Analogy

Blackboard 
System

Agents share a common 
knowledge base (the 
“blackboard”) where each posts 
partial solutions or hypotheses. 
A control shell decides which 
agent acts next.

Problems are decomposable and benefit 
from opportunistic collaboration — e.g., 
perception-planning pipelines, scientific 
data analysis with shared intermediate 
results.

Shared whiteboard; 
each specialist adds 
insights until 
consensus.

Contract-Net 
Protocol 
(CNP)

A manager agent broadcasts a 
task; contractors bid based on 
capability or cost; manager 
awards the task.

Resource allocation and scheduling 
across distributed or heterogeneous 
agents — e.g., selecting which lab, robot, 
or compute node runs a sub-experiment.

Job auction or 
dynamic 
marketplace.

Actor / Graph 
Workflows

Agents (actors) communicate 
through message passing along 
explicit edges; control flow is 
deterministic and inspectable.

When reliability, debugging, or 
reproducibility are priorities — e.g., 
workflow orchestration (LangGraph, Ray, 
Dask) or multi-stage simulation chains.

Directed graph of 
cooperating 
workers.



Orchestration and Scale → Agents Meet HPC

• Long-running workflows: Scientific agents must persist across long 
experiments, spanning hours, days, or even weeks of compute.
• Scalable inference: Applications may require many 1000s of LLM instances
• Fault tolerance: Agents should resume gracefully after GPU/LLM/API 

failures via checkpointing and replay.
• Scalable compute integration: Agents must leverage HPC schedulers 

(Slurm, PBS) to launch simulations, transfer data, and monitor progress.
• Hybrid orchestration: Combine interactive reasoning loops with queued 

batch jobs — the “agent ↔ scheduler handshake.”
• System design challenge: How do we preserve agent autonomy while 

embedding it in HPC-style reliability?



Three systems compared & contrasted

Axis AutoGen LangGraph AIOS

Abstraction Conversation-
programmed agents Graph/state machine OS-style runtime 

    (kernel + SDK)

Primary 
concern

Inter-agent dialog + 
tools

Deterministic 
orchestration, 
persistence, 
human-in-loop

Scheduling, 
memory/context, 
storage, access control

State Conversation history + 
tool results

Explicit shared state 
object

Kernel-managed contexts/ 
memory

When to use Fast prototyping of 
multi-agent patterns

Production flows 
needing reliability & 
debuggability

Multi-tenant, long-running, 
resource-intensive 
deployments



LangChain LangGraph AutoGen AIOS

Control Programmatic Graph-defined Conversational Kernel-
scheduled

Scope Single agent Multi-step Multi-agent Multi-system

From LangChain to AIOS: A stack for agentic science



From LangChain to AIOS: A stack for agentic science

Layer Framework / 
Concept Focus Analogy

Application LangChain Single-agent reasoning, tool 
use, ReAct loops

“App logic” — a script that 
calls the LLM and tools

Orchestration LangGraph
Deterministic control-flow 
graphs, state persistence, 
human-in-loop

Workflow engine

Collaboration AutoGen Multi-agent conversation, 
planner–critic–executor roles

Distributed process 
management

Runtime / 
System AIOS Kernel for scheduling, memory, 

storage, access control
Operating system for 
agents



The multi-agent architecture in action: user queries flow through a lead agent that creates 
specialized subagents to search for different aspects in parallel.

High-level architecture of Advanced Research

https://www.anthropic.com/engineering/multi-agent-research-system 
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Benefits of a multi-agent system (Anthropic)

• “Multi-agent research systems excel especially for breadth-first 
queries that involve pursuing multiple independent directions 
simultaneously”
• “Multi-agent systems work mainly because they help spend enough 

tokens to solve the problem”
• “multi-agent systems excel at valuable tasks that involve heavy 

parallelization, information that exceeds single context windows, and 
interfacing with numerous complex tools”

https://www.anthropic.com/engineering/multi-agent-research-system 
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Lessons learned (Anthropic)

• Think like your agents
• Teach the orchestrator how to delegate
• Scale effort to query complexity
• Tool design and selection are critical
• Let agents improve themselves
• Start wide, then narrow down
• Guide the thinking process
• Parallel tool calling transforms speed and performance

https://www.anthropic.com/engineering/multi-agent-research-system 
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Discussion questions

• Where should reasoning stop and system management begin?
• What belongs inside the agent vs. in the runtime?
• How do we ensure safety and reproducibility as agents gain 

autonomy?
• Could scientific discovery platforms one day run on AIOS-like 

kernels?







Coscientist 
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