Al Agents for Science

Lecture 3, October 3: Systems for Agents

Instructor: lan Foster
TA: Alok Kamatar

= CMSC 35370 -- https://agents4science.github.io
FresEn cefeniey it sl https://canvas.uchicago.edu/courses/67079

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

Curriculum

1) Why Al agents for science?

Al agents and the sense-plan-act-learn loop. Scientific Discovery Platforms (SDPs): Al-
native systems that connect reasoning models with scientific resources.

2) Frontiers of Language Models

Surveys frontier reasoning models: general-purpose LLMs (GPT, Claude), domain-
specific foundation models (materials, bio, weather), and hybrids. Covers techniques
for eliciting better reasoning: prompting, chain-of-thought, retrieval-augmented
generation (RAG), fine-tuning, and tool-augmented reasoning.

3) Systems for Agents

Discusses architectures and frameworks for building multi-agent systems, with
emphasis on inter-agent communication, orchestration, and lifecycle management.

4) Retrieval Augmented Generation (RAG) and Vector Databases

Covers how to augment reasoning models with external knowledge bases, vector
search, and hybrid retrieval methods.

From single-agent control - multi-agent
orchestration - system-level runtime

* LangGraph
* Reframes agents as explicit graphs with state, giving you determinism and
controllability for orchestration.

* AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent

Conversation

» Shows the conversation-centric paradigm for multi-agent apps (agents as
conversants; tool use via messages).

* AIOS: LLM Agent Operating System

* Treats agents as first-class OS-managed workloads with scheduling,
memory/context, storage, and access control—a lifecycle and runtime view at
system level; reports speedups from centralized resource management.

Langchain: A tool for building (simple) agents

“Agents combine language models with tools to create systems that
can reason about tasks, decide which tools to use, and iteratively
work towards solutions.”

LangChain

The platform for reliable agents.

LangChain is a framework for building LLM-powered applications. It helps you chain together interoperable
components and third-party integrations to simplify Al application development — all while future-proofing decisions
as the underlying technology evolves.

<5228 X Follow @LangChainAl

pip install -U langchain https://github.com/langchain-ai/langchain G

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain

LangChain supports two major paradigms (1/2)

1) Chains — deterministic, linear workflows
* A Chain is a fixed pipeline of LLM calls, prompt templates, retrievers, or other

components
* The developer defines the order and the control flow
* The model just fills in text or returns a result: It doesn’t decide what happens next

from langchain import LLMChain
chain = LLMChain(llm=gpt4, prompt=prompt)

chain.run("Summarize this document.")

* The system runs a single pass: input - prompt - LLM - output
* There is no looping or tool selection

LangChain supports two major paradigms (2/2)

2) Agents — dynamic, ReAct-style loops
* An Agent wraps one or more tools; the model decides what to do next
* The LLM emits reasoning steps like: Thought: I need to look this up.

Action: Search
Action Input: "CEO of Tesla"

)

* LangChain parses these, executes the matching Tool.func(), injects the “Observation’
back into the prompt, and calls the model again

* This forms a Reason - Act -» Observe - Repeat loop until model outputs Final
Answer

langchain-ai.github.io/langgraph/tutorials/workflows

Workflows VS- age ntS htt sr?ttws\;vw.anthro ic.com/engineering/building-effective-agents

Workflows: Systems where LLMs and tools are orchestrated through predefined code paths.
Agents: Systems where LLMs dynamically direct their own processes and tool usage, maintaining

control over how they accomplish tasks.

Workflows Agent
Orchestrator-Worker
oveteter A gy | Syt
. . ! In —= | @’ . l_::’%{@\geow '
Prompt Chainin i S N g T s
LLEmIl g * 1\~~"' LLM call Tool
T O . . P e action - >
me | @ @] e Evaluator-optimizer In —= | &5 : .{ . out
Generotor Bvalioter b T e
Parallelization st Jaal Fhads
/ l @ | — oa | S~ : \/
o . Peedback
i NN | Routin | >
S i Router B (o
> | @ o
\ :[—-éi—g—) —> Out
LLM is embedded in LLM directs control flow . LLM directs its own actions

épredefined code paths § through predefined code paths |based on environmental feedbacl

https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents

Workflows

Building block: The augmented LLM

In

Query/

Results

4

-

Retrieval

L4
4

4
4

Call/
Response

A4

Tools

WV

A
s

Read/
Write

Memory

Out

Workflows

Prompt chaining

Pass
LLM Call 2 LLM Call 3 Out

Output 2

In LLM Call 1 Gate
Output 1

Exit
Fail

Decompose a task into a sequence of steps, where each LLM call processes the
output of the previous one. You can add programmatic checks (see "gate” in the
diagram) on any intermediate steps to ensure that the process is still on track.

Workflows

Routing
LLM Call1
In LLM Call 2 Aggregator Out
LLM Call 3

Routing classifies an input and directs it to a specialized followup task. Allows for
separation of concerns, and building more specialized prompts. Otherwise,
optimizing for one kind of input can hurt performance on others.

Workflows: Evaluator-optimizer

Routing

Solution

LLM Call LLM Call
In Out
Generator Evaluator
Accepted
Rejected +
Feedback

One LLM call generates a response while another provides evaluation and
feedback in a loop

Built-in chains: e.g., “summarize chain”

from langchain import OpenAl
from langchain.chains.summarize import load_summarize_chain

from langchain.docstore.document import Document

11m = OpenAI(temperature=0)
docs = [Document(page_content="LangChain helps build modular LLM applications.")]

chain = load_summarize_chain(1llm, chain_type="map_reduce")
summary = chain.run(docs)

print(summary)

def load _summarize_ chain(
11lm: BaselLanguageModel,
chain_type: Optionallstr] = None,
*xkwargs: Any,
) —> BaseCombineDocumentsChain:
""" oad summarizing chains."""
If chain_type not provided, choose default
chain_type = chain_type or detect_default_type(1llm)
if chain_type == "stuff":
return StuffSummarizationChain(1llm=11m, s*xkwargs)
elif chain_type == "map_reduce":
map_chain = load_summarize_chain(1llm, chain_type="stuff", sxxkwargs)
combine_chain = load_summarize_chain(1llm, chain_type="stuff", sxkwargs)
return MapReduceSummarizationChain(1lm=11m,
map_chain=map_chain,
combine_chain=combine_chain,
*xkwargs)
elif chain_type == "refine":
iterate refine style
return RefineSummarizationChain(1lm=11m, sxkwargs)

else:
raise ValueError(f"Unknown chain_type: {chain_typel}")

Recall structure of a basic agent

* Initialize state and goals

e Repeat until termination:
* Sense: Gather observations from environment
* Plan: Evaluate goals and state, plan/select next action
* Act: Execute chosen action on environment
* Learn: Update internal state, memory, or model based on outcomes

In sequence: call tool, invoke LLM, test for termination; repeat

Agents

Agents begin their work with either a command from, or interactive
discussion with, the human user.

Once the task is clear, agents plan and operate independently, potentially
returning to the human for further information or judgement.

During execution, agents gain “ground truth” from the environment at
each step (such as tool call results or code execution) to assess progress.

Agents can pause for human feedback at checkpoints or when
encountering blockers.

Action
| o ~\
LLM Call | . Environment |
: Feedback
4

Stop

ReAct loop with LangChain create-agent

ReAct frames an agent’s behavior as an interleaving of
thought = action = observation

steps, where the model writes out its reasoning, picks
a tool, sees the tool’s result, and then repeats.

LangChain create_agent() can be used to implement
ReAct loops:

* It builds a graph-based agent runtime using
LangGraph, where a graph consists of nodes (steps)
and edges (connections) that define how your agent
processes information.

answer

* The agent moves through this graph, executing
nodes like the model node (which calls the model)
& tools node (which executes tools)

The ReAct agent

In a ReAct agent (AgentType.ZERO SHOT REACT_DESCRIPTION):
* The LLM generates Thought - Action = Action Input - Observation blocks

* Each Tool is advertised via its description
* The model chooses an action name (e.g., "Summarizer") and passes arguments
(Action Input) as JSON-like text

* LangChain executes the corresponding Python function (func) and inserts the
result into the next prompt as an “Observation”

vt il Example: Summarize Document via ReAct Loop

from langchain.agents import Tool, initialize_agent, AgentType
from langchain.text_splitter import RecursiveCharacterTextSplitter

from langchain.docstore.document import Document

from langchain.chains.summarize import load_summarize_chain I S e e e ———=
Ei DEFINE OTHER OPTIONAL TOOLS

& #

ﬁ PREPARE LLM AND DOCUMENT

calc_chain = LLMMathChain.from_11m(11lm)
calc_tool_def = Tool(
name="Calculator",

#
1lm = OpenAI(temperature=0)

o = 000 func=calc_chain.run,

LangChain provides a standard interface for chains, a set of integrations with other to description="Perform basic math operations when needed."
and end-to-end chains for common applications such as summarization, question answering)

and code analysis. It is modular and composable, enabling developers to build complex

applications from small, reusable components.

tools = [summarize_tool_def, calc_tool_def]

Convert to a Document object
docs = [Document(page_content=text)] # ii INITIALIZE A REACT AGENT
———— W——
0 Q) .
— agent = initialize_agent(
DEFINE A SUMMARIZATION TOOL
tools=tools,
You can wrap any chain as a "Tool" so the agent can decide to use 1it. 11m=11m,
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, # This is the ReAct loop
summarize_chain = load_summarize_chain(1lm, chain_type="stuff") verbose=True
)
def summarize_tool(input_text):
"""Summarize long text using an LLM chain."""
document = [Document(page_content=input_text)] i
return summarize_chain.run(document) # a RUN THE AGENT
p—— P——
summarize_tool_def = Tool(query = "Summarize this document:\n" + text
RETE= SR 2GR result = agent.run(query)

func=summarize_tool,

description="Summarize a long text document into a concise summary." . .
print("\nFinal Answer:\n", result)

Simplified system prompt:

You can use the following tools:

Summarizer: Summarize a long text document into a concise summary.

Calculator: Perform basic math operations when needed.
Use the following format:

Thought: what you are thinking

Action: the tool to use

Action Input: the input to that tool

Observation: the result of the tool
(repeat as needed)

Thought: I now know the final answer

Final Answer: your answer to the user

Step 1: LLM “reasons” in text

When you run

python

agent.run("Summarize this document: [text]")

LangChain sends the question and tool list to the LLM.
. H “ H ”
The model’s training on the ReAct pattern (Reason + Act) guides it to follow that format: Step 2: LangCham parser detects the “Action

The AgentExecutor watches the model's output.
vbnet

It uses regex-based parsing to extract:

Thought: I should summarize this text.

python
Action: Summarizer
ABiERE MEURE (G e action_name = "Summarizer"
action_input = "[the text]"

It then finds the corresponding Tool object by name and runs:

python

tools["Summarizer"].func(action_input)

The tool’s result (the summary) is captured as:

vbnet

Observation: LangChain is a modular framework for building LLM apps.

Step 3: Observation returned to LLM
LangChain appends that observation to the prompt and calls the model again:

vbnet
Observation: LangChain is a modular framework ...

Thought: I now have the final answer.

Final Answer: [summary]

When the model writes “Final Answer,” the executor stops the loop.

ReAct loop with LangChain create-agent

ReAct frames an agent’s behavior as an interleaving of
thought = action = observation

steps, where the model writes out its reasoning, picks
a tool, sees the tool’s result, and then repeats.

LangChain create_agent() can be used to implement
ReAct loops:

* It builds a graph-based agent runtime using
LangGraph, where a graph consists of nodes (steps)
and edges (connections) that define how your agent
processes information.

* The agent moves through this graph, executing
nodes like the model node (which calls the model)
& tools node (which executes tools)

What is the weathe

in San Fran? Does reply

answer
estion?

Call
get_weather
function

Infor about
weather

answer

pip install -qU "langchain[anthropic]" to call the model
from langchain.agents import create_agent

def get_weather(city: str) -> str:
""nGet weather for a given city.""" A simple agent that can answer questions

return f"It's always sunny in {city}!" i
The agent has the following components:

agent = create_agent(A language model (Claude 3.7 Sonnet)

model="anthropic:claude-3-7-sonnet-latest",

tools=[get_weather], A simple tool (weather function)

prompt="You are a helpful assistant",

A basic prompt

The ability to invoke it with messages

Run the agent
agent.invoke(
{"messages": [{"role": "user", "content": "what is the weather in sf"}]}

https://docs.langchain.com/oss/python/langchain/overviev

https://docs.langchain.com/oss/python/langchain/overview

from langchain.agents import create_agent
from langchain_core.messages import AIMessage

def extract_final_answer(run_output: dict) -> str:
messages = run_output.get("messages", [])
Walk backward through messages to find the last AIMessage with content
" for msg in reversed(messages):
if isinstance(msg, AIMessage):
if msg.content and msg.content.strip():

return msg.content.strip() . .
return " = i “It’s sunny in San Francisco today!

The skies are clear, and you can
def get_weather(city: str) -> str: t mild t t L d
"n"iGet weather for a given city.""" expect mi emperatures—aroun
return f"It's always sunny in {city}!" 68°F (20°C). Enjoy the beautiful
V24
agent = create_agent(weather!
model="openai:o4-mini",
tools=[get_weather],
prompt="You are a helpful assistant",

r = agent.invoke({"messages": [{"role": "user", "content": "what is the weather in sf today"}1})

print(extract_final_answer(r))

“Today in Chicago, it’s sunny with clear skies and pleasant conditions. Enjoy your day outdoors!”

Recall “Peptide Expert” example

Repeat until answer is satisfactory:
Publ@ed (&) chatcPT p y
| Query PubMed for ChatGPT * Retrieve abstracts A from PubMed that
: feedstock : reference specified peptide
| |
' i I
| p— N 5' ’)) | * Use ChatGPT to build hypotheses:
| |
~~~~~~~~~~~~~~ “Given A, on which organism is

{peptide} acting?”

|.e.: query PubMed, and then call ChatGPT

Arvind Ramanathan, Priyanka Setty, et al.



ReAct loop with LangChain create-agent

ReAct frames an agent’s behavior as an interleaving of
thought = action = observation

steps, where the model writes out its reasoning, picks
a tool, sees the tool’s result, and then repeats.

LangChain create_agent() can be used to implement
ReAct loops:

* It builds a graph-based agent runtime using
LangGraph, where a graph consists of nodes (steps)
and edges (connections) that define how your agent
processes information.

* The agent moves through this graph, executing
nodes like the model node (which calls the model)
& tools node (which executes tools)

On which organism
does peptide act?

Hypotheses re action?
Good enough?
thought
Query
PubMed
re peptide

Docs that
reference
peptide

answer



Build an agent with langchain

Next, build a practical weather forecasting agent that demonstrates key production concepts:

1. Detailed system prompts for better agent behavior
2. Create tools that integrate with external data

3. Model configuration for consistent responses

4. Structured output for predictable results

5. Conversational memory for chat-like interactions

6. Create and run the agent create a fully functional agent

https://docs.langchain.com/oss/python/langchain/quickstart



https://docs.langchain.com/oss/python/langchain/quickstart

1. Detailed system prompts
2. Create tools

3. Model configuration

4. Structured output

5. Conversational memory
6. Create and run the agent

The system prompt defines your agent’s role and behavior. Keep it specific and actionable:

w)

system_prompt = """You are an expert weather forecaster, who speaks in puns.

You have access to two tools:

- get_weather_for_location: use this to get the weather for a specific location
- get_user_location: use this to get the user's location

If a user asks you for the weather, make sure you know the location. If you can tell from the question
that they mean wherever they are, use the get_user_location tool to find their location."""



1. Detailed system prompts
2. Create tools
3. Model configuration

from dataclasses import dataclass

from langgraph.runtime import get_runtime

4. Structured Output def get_weather_for_location(city: str) -> str:
5. Conversational memory """Get weather for a given city."""

6. Create and run the agent return f"It's always sunny in {city}!"
Tools let a model interact with @dataclass

external systems by calling class Context:

functions you define. """Custom runtime context schema."""

user_id: str
Tools can depend on runtime

context and also interact with def get_user_location() -> str:

agent memory ""'Retrieve user information based on user ID."""
runtime = get_runtime(Context)

Notice below how the user_id = runtime.context.user_id

get_user_location tool uses return "Florida" if user_id == "1" else "SF"

runtime context



Ok wnN =

Detailed system prompts
Create tools

Model configuration
Structured output
Conversational memory
Create and run the agent

from langchain.chat_models import init_chat_model

model = init_chat_model(
"anthropic:claude-3-7-sonnet-latest",
temperature=0



1. Detailed system prompts
2. Create tools

3. Model configuration

4. Structured output

5. Conversational memory

6. Create and run the agent

Optionally, define a structured response format if you need the agent

responses to match a specific schema.

w)

from dataclasses import dataclass
from typing import Optional

# We use a dataclass here, but Pydantic models are
also supported.
@dataclass
class ResponseFormat:
"""Response schema for the agent."""
# A punny response (always required)
punny_response: str
# Any interesting information about the weather
if available
weather_conditions: Optional[str] = None



Detailed system prompts
. Create tools

Model configuration

. Structured output

. Conversational memory
. Create and run the agent

Add memory to your agent to maintain state across interactions. This

allows the agent to remember previous conversations and context.

from langgraph.checkpoint.memory import InMemorySaver O

checkpointer = InMemorySaver()

(i) In production, use a persistent checkpointer that saves to a database.
See add and manage memory for more details.




Detailed system prompts
Create tools

Model configuration
Structured output
Conversational memory
Create and run the agent

agent = create_agent(
model=model,
prompt=system_prompt,
tools=[get_user_location, get_weather_for_location],
context_schema=Context,
response_format=ResponseFormat,
checkpointer=checkpointer

~—

# “thread_id® is a unique identifier for a given conversation.
config = {"configurable": {"thread_id": "1"}}

response = agent.invoke(
{"messages": [{"role": "user", "content": "what is the weather outside?"}]},
config=config,
context=Context(user_id="1")

print(response['structured_response'])

# ResponseFormat(

# punny_response="Florida is still having a 'sun-derful' day! The sunshine is playing
'ray-dio' hits all day long! I'd say it's the perfect weather for some 'solar-bration'!
If you were hoping for rain, I'm afraid that idea is all 'washed up' - the forecast
remains 'clear-1ly' brilliant!",

# weather_conditions="It's always sunny in Florida!"

#)



# Note that we can continue the conversation using the same "thread_id .
response = agent.invoke(
{"messages": [{"role": "user", "content": "thank you!"}1},
config=config,
context=Context(user_id="1")

print(response['structured_response'])

# ResponseFormat(

# punny_response="You're 'thund-erfully' welcome! It's always a 'breeze' to help you
stay 'current' with the weather. I'm just 'cloud'-ing around waiting to 'shower' you
with more forecasts whenever you need them. Have a 'sun-sational' day in the Florida
sunshine!",

# weather_conditions=None

#)



Summary of the example

Langchain allows our agent to:

* Perform tasks in sequence THIS

* Understand context and remember conversations

N
* Use multiple tools intelligently N UT

* Provide structured responses in a consistent format
* Handle user-specific information through context ggEK’ECE

* Maintain conversation state across interactions



LangGraph

“LangGraph is a low-level orchestration framework for building, managing, and deploying long-
running, stateful agents:

Durable execution: Build agents that persist through failures and can run for extended
periods, resuming from where they left off.

Human-in-the-loop: Incorporate human oversight by inspecting and modifying agent state at
any point.

Comprehensive memory: Create stateful agents with both short-term working memory for
ongoing reasoning and long-term memory across sessions.

Debugging with LangSmith: Gain deep visibility into complex agent behavior with
visualization tools that trace execution paths, capture state transitions, and provide detailed
runtime metrics.

Production-ready deployment: Deploy sophisticated agent systems confidently with scalable
infrastructure designed to handle the unique challenges of stateful, long-running workflows.”

https://docs.langchain.com/oss/python/langgraph/overview



https://docs.langchain.com/oss/python/langgraph/overview

ReAct-style “reasoning +
acting + reflecting” loop in
LangGraph

LangGraph lets you represent
each step — “Reason”, “Act”,
“Observe”, and “Reflect” — as
nodes in a graph, connected by
conditional edges that can loop
until a termination condition is
met.

from langgraph.graph import StateGraph, END
from langchain_openai import ChatOpenAl

11lm = ChatOpenAI(model="gpt-40")

def think(state):
plan = llm.invoke(f"Think step: {statel['question']} Current answer: {state['answer'

return {"plan": plan}

def act(state):

action_result = run_tool(state["plan"])
return {"action_result": action_result}

def reflect(state):
reflection = 1llm.invoke(f"Reflect on action: {statel['action_result'l}")
if "complete" in reflection:
return {"done": True}

return {"done": False}

workflow = StateGraph()
workflow.add_node("think", think)
workflow.add_node("act", act)
workflow.add_node("reflect", reflect)

workflow.add_edge("think", "act")
workflow.add_edge("act", "reflect")
workflow.add_conditional_edges("reflect", lambda s: END if s["done"] else "think")

graph = workflow.compile(checkpointer="sqlite")

graph.invoke({"question": "Find the largest prime under 100."})




Think

for {question},

fPlan next action

given {answer}’

_ Y,
Y
e N
Act
““Execute {plan}
and return
{action_result}’
_ l Y,
a N\
Done

v

Reflect @
OReflect

on {action_}




AutoGen for multi-agent LLM frameworks

LangChain

LLM

Functional Chaining

A modular sequence of
LLMs and tools invoked
to complete tasks

Design Focus
Tool Integration

LangGraph

B

Stateful Graphs

Structured workflows
formed from LLMs and
tools with cyclical edges

Design Focus
Safety and Control

AutoGen

Al
/ N

Message Message

/

<—Too|—> j

Conversational Agents

Agents communicate
by exchanging messages
in a conversation-like manner

Design Focus
Creativity and Collaboration



Multi-agent systems

Why multiple agents
* Partition expertise
* Run in parallel
 Contain risk

e Govern data



Why multiple agents? (in more detail)

* Specialization improves quality: Narrow, role-tuned agents outperform generalists on
their slice

* Parallelism increases throughput: Independent agents work concurrently on sub-tasks

* Heterogeneous tools & environments: Different agents own different toolchains (HPC,
LIMS, robots, DBs)

* Robustness & fault isolation: One agent can fail, restart, or be replaced without taking
down the system

* Self-checking & consensus: Cross-agent critique, redundancy, and voting reduce error
and bias

* Long-running workflow control: Persistent agents watch queues, schedule jobs, and
resume after interruptions

* Governance, security, provenance: Data stays within the minimal-privilege agent;
actions are auditable by role

* Scalability & cost control: Orchestrators spawn cheap/ephemeral workers; premium
models only where needed



Challenges relating to multi-agent systems

* Creating agents

* Monitoring agents

* Inter-agent communication

* Monitoring agents/agent lifecycle



Perils of multiple agents — Why systems matter

Risk Area

Coordination Chaos
Loss of Accountability
Emergent Behavior
Security & Safety
Human Factors

Resource/Cost Blow-up

Description

Agents loop, contradict, or
amplify each other’s errors.

Hard to trace which agent
caused errors or bias.

Unpredictable dynamics—
agents invent new “protocols.”

Tool calls, code exec, or APl use
may cause harm.

Over-trust, confusion, or
reduced oversight.

Many agents - exponential
token and time costs.

Mitigation
Limit turn count, add
arbiter/watchdog agent.

Log every message & decision;
require provenance.

Constrain roles and allowable
message types.

Sandbox actions, validate outputs,
human approval.

Keep humans in loop; clear Ul for
agent reasoning.

Prune redundant roles; use
shared memory or caching.



How systems can help

* Scheduling & Fairness: Coordinated access to LLM cores, memory,
and tools (AIOS kernel)

* Isolation & Governance: Sandboxed agents with explicit privileges;
traceable syscalls

* Reproducibility: Logged context snapshots and deterministic replay
improve scientific auditability

 Safety & Oversight: Policy enforcement and user-intervention
checkpoints before critical actions

* Scalability: From a handful of agents to thousands sharing compute,
without chaos



“AutoGen: Enabling Next-Gen LLM
Applications via Multi-Agent Conversation”

AutoGen?2 allows developers to build LLM applications via multiple
agents that can converse with each other to accomplish tasks.

AutoGen agents are customizable, conversable, and can operate in
various modes that employ combinations of LLMs, human inputs, and

tools.

Developers can also flexibly define agent interaction behaviors.

Both natural language and computer code can be used to program
flexible conversation patterns for different applications.

https://arxiv.org/pdf/2308.08155 See also https://github.com/microsoft/agent-framework



https://arxiv.org/pdf/2308.08155
https://github.com/microsoft/agent-framework
https://github.com/microsoft/agent-framework
https://github.com/microsoft/agent-framework

AutoGen

________________ ® Plot a chart of T
Conversable agent - o alA @ @) Output:

! I I 1
P o -_' | . @& stock price change //
1 1S > = 1 » YTD. $
| |
{ Z. ' 1 : 1 : Execute the gy

! :
|
|
: - N following code... - Month
! . " [ ] o,
! @ e x> : Multi-Agent Conversations @ @ Eerror package e €@ No, please plof %
: - / ! yfinance is not change!
| I e R L installed . .
b e e e e e e ! D@ @ @ Got it! Here is the ¢
P ie> 1= Sorry! Please first revised code .. ~
_____ ,/_1 L I je=sg N A= pip install yfinance - e
\ : ] ! and then execute - Output:
A Lot d \/ /$\ o the code
- 1 | - | L@ L @ E - 3 @ o
: L 1 L8 18] @ G @ @ 1nstalling.. %
! l ! | . .
o _____ I o | Joint chat Hierarchical chat —
on
Agent Customization Flexible Conversation Patterns Example Agent Chat

Figure 1: AutoGen enables diverse LLM-based applications using multi-agent conversations. (Left)
AutoGen agents are conversable, customizable, and can be based on LLMs, tools, humans, or even
a combination of them. (Top-middle) Agents can converse to solve tasks. (Right) They can form
a chat, potentially with humans in the loop. (Bottom-middle) The framework supports flexible
conversation patterns.

https://arxiv.org/pdf/2308.08155



https://arxiv.org/pdf/2308.08155

AutoGen: Multi-agent conversation

AutoGen enables LLM-driven applications composed of multiple
cooperating agents that communicate via structured conversations. Each
agent can represent a specialized role — such as planner, executor, critic,
or user proxy — and interact using natural language or code.

Conversation programming addresses computation (actions agents take
to compute their response in a conversation) and control flow (order
and conditions under which individual computations in the conversation
are executed or evaluate)



AutoGen — Multi-Agent Conversation Framework

* Key Features

* Conversational Orchestration: Tasks are decomposed and coordinated
through dialogue rather than fixed pipelines.

* Flexible Agent Roles: Agents can be LLMs, humans, or tool wrappers; each
follows its own prompt and behavioral policy.

* Hybrid Programming: Conversations can mix natural language, Python, and
tool calls — enabling “conversation-as-code.”

* Interoperability: Integrates easily with frameworks like LangChain and
supports tools, APIs, or custom function calls.

* Architecture Overview
* Planner Agent: Defines goals, breaks down tasks, delegates subtasks.
» Executor / Assistant Agents: Perform the work using tools or reasoning.

* Critic Agent: Evaluates outputs, flags errors, and proposes refinements.
* User Proxy: Represents human intent or feedback.



Example: “ProtAgents: Protein discovery via large
language model multi-agent collaborations”

Planner (to chat_manager):

user_proxy (to chat_manager):
1- Formulate a plan and elucidate
.- 2- Revise the plan based on

* Planner: Determines what steps to take | . overview
feedback from the critic

* E.g., “design sequence = simulate l
- evaluate”

Critic (to chat_manager):

* Assistant: Can call tools Assistant (to chat_manager):
* E.g. structure predictors, physics simulators | }-Execute the functions

2- Return the outcome

* Critic: Reviews results, spots errors, suggests refinements

1- Evaluate the overall plan

, 2-Evaluate the functions execution
and handle the possible issues

3- Analyze the results

* User proxy: Receives human instructions

The multi-agent system generates candidate sequences, simulates their
mechanical / structural properties, critiques them, and iterates, aiming toward a

design goal (e.g., a protein with a particular vibrational frequency or stiffness)
https://arxiv.org/pdf/2402.04268



https://arxiv.org/pdf/2402.04268

\;:?3 Scenario: "Design a peptide inhibitor for a target protein.”

Planner (Coordinator)

Let's design a peptide that binds to Protein X's active site and blocks catalysis.
Assistant, please generate 3 candidate peptide sequences predicted to bind the site.
Critic, once those are ready, evaluate them for stability and binding energy.

Assistant (Generator)

| used the AlphaDesign tool and propose:

1. "“PepA: GLY-LEU-SER-TYR-ASP"”
2. "PepB: PHE-LYS-THR-TRP-ARG"
3. "PepC: VAL-TYR-GLY-ASP-ARG"

Each was optimized for hydrophobic pocket fit. Results are stored in candidate_peptides.csv .



Critic (Evaluator)

Running coarse docking simulations...

e "PepA: AG = -6.8 kcal/mol (unstable secondary structure)”
» “PepB: AG = -8.9 kcal/mol (stable a-helix) §4"
e "PepC: AG = -6.1 kcal/mol (poor binding surface)”

Recommend PepB as the best candidate.

J Planner

Excellent. Assistant, please refine PepB to improve solubility.
Add polar residues at termini while preserving core interactions.



Assistant

Modified sequence: SER-PHE-LYS-THR-TRP-ARG-ASP
Predicted solubility: ™ 15% per ProtSol model.

L2 Critic
Re-simulated: AG = -8.7 kcal/mol: RMSD = 1.4 A - still stable.
Solubility confirmed.

User Proxy

That's within target parameters. Proceed to wet-lab validation.



AlIOS: LLM Agent Operating System

* Proposes a comprehensive system-level architecture for serving large-language-
model-based agents

* introduces a kernel-based architecture that treats large language models (LLMs)
and their associated tools as first-class operating-system resources.

@ User: I'm flying from San Francisco to New York for business next month, please help organize the trip.

|-G- Travel Agent: Understood. I’ll plan and book your itinerary according to your previous preferences. |

Step @ Step @ Step @ Step @ Step @ Step @ Step @

Preference Flight and hotel Photo ID Seat ( Payment ) Add Ticket to Reviews
Retrieval Recommendatlon Upload Selechon | Processing | Calendar and tips
T T

T T
1 1 1 I

¥ v 4 v

LLM Storage Tool API Disk Storage Tool API ([ software | Software Text Generation
(managed by LLM) (managed by LLM) (managed by OS) (managed by LLM) L (managed by OS) ) (managed by OS) (managed by LLM)

Figure 1: A motivating example of how an agent (i.e., travel agent) requires both LLM-
related and Non-LLM-related (i.e., OS) services to complete a task, where color in red



The AIOS “Agent OS kernel”

* Instead of allowing each agent framework (e.g., LangChain, AutoGen, ReAct) to
manage LLM calls, memory, and tools independently, AIOS provides a central “Agent
OS kernel” responsible for:

e Scheduling and multiplexing access to LLM resources

* Memory and storage management for agent state and context
* Tool management with validation and concurrency control

* Access control and user-confirmation safeguards

* An SDK layer (APl interface) allowing agent developers to invoke “AlOS syscalls” instead of
managing resources directly

* A three-layer stack:
 Application layer: agent logic built via SDK APIs
* Kernel layer: AIOS kernel managing LLM, memory, tools, access
» Hardware layer: traditional OS and devices (CPU/GPU/memory)

* LLM cores are treated like CPU cores; agent requests become system calls; and a
scheduler orchestrates them



Agent Application [ (C)) Travel Agent ] [ubRec Agent ] [ [ Coding Agent ] [ Math Agent ] [@Narrative Agent ]

File Operation I Reasoning & Planning
ﬁmﬁﬁgi }Non-LLM Related Queries AIOS- Agent SDK LLM Related Queries{ Cojc“;;oé zzzsri;in Application Layer
- e Kemel Layer
OS Kernel AIOS Kernel
[ Process Scheduler ]4— AIOS System Call

3

[Memory Manager] ( LLM [ Agent ] [ Context ] Memory [Storage ] [ Tool ] Access |
L__Core(s) Scheduler Manager Manager Manager Manager Manager )

Filesystem I‘— ¥

[ Hardware Driver ]< > OS System Call

il Hardware Layer

Hardware [ Peripheral Devices ]

Figure 2: An overview of the AIOS architecture of distinct layers. Application layer facilitates
the design and development of agent applications. Kernel layer manages core functionalities
and resources to serve agent applications. Hardware layer controls and manages physical
computing resources and devices to support kernel layer functionalities.




Agent Queries
Query Al Query Bl Query C2 Query D2 Query E3 Query F3

Content: {xxx} Content: {xxx} Content: {xxx} Content: {xxx} ( Content: {xxx} Content: {xxx}
Type: Chat Type: File Operation Type: Tool Use Type: Chat Type: File Operation Type: Tool Use

@ Query Decomposition

AIOS System Call
| BLILLMSyscall | | C2.1LLMSyscall | | E31LLMSyscall | | F3.1 LLM Syscall |
| ALILLM Syscall | T T | D2.1 LLM Syscall
| B1.2 Storage Syscall | | C2.2 Tool Syscall | ¢ | E3.2 Storage Syscall | | F3.2 Tool Syscall |
| A1.2 Memory Syscall | | D2.2 Memory Syscall |
| B1.3 Memory Syscall | | C2.3 Memory Syscall | | E3.3 Memory Syscall | | F3.3 Memory Syscall |
AIOS Kernel @ Thread Binding
s 5
( Context Manager | Scheduler
[ LLM Core(s) ]+—>| LLM Queue E3.1 | |Memory Queue —f MemoryIManager ]
[ Tool Manager ]*-'I Tool Queue | |Storage Queue B1.2 |<—>[ Storage Manager ]
\

4

[ In-processing system call — Execution chain

Figure 3: How agent queries are decomposed into AIOS system calls and how AIOS system
calls are dispatched and scheduled. We omit the access manager module here as the access-
related system calls will not be dispatched by the scheduler.



Evaluation

* Throughput: Up to 2.1x faster when multiple agents share limited
GPU resources

* Latency: Reduced by scheduler control and pre-emptive LLM
switching

* Scalability: Near-linear up to 2 000 agents

 Correctness: Context-switch BLEU / BERT = 1.0 = identical outputs
after interruption



1 With AIOS 1 Without AIOS 1 With AIOS 1 Without AIOS

1.0 7 — — 1.0 — — —

1N e ol o R EED

0.0
ReAct Reflexion Autogen  Open-Interpreter MetaGPT ReAct Reflexion Autogen  Open-Interpreter MetaGPT
Agents/Agent Frameworks Agents/Agent Frameworks

(a) Normalized throughput. Higher is better. (b) Normalized latency. Lower is better.
Figure 6: Efficiency analysis on different agent frameworks evaluated on the Llama-3.1-8b
model on the HumanEval benchmark.

Latency (Normalized)

Throughput (Normalized)

= [ With AIOS T Without AIOS 1 With AIOS [ Without AIOS

S10 — — — — — §1 0] — — e e e
© N

E ©

S £

z S

— 05 Z 0.5

2 s

L (o]

3 5

2 0.0 800

= ReAct Reflexion Autogen  Open-Interpreter MetaGPT ReAct Reflexion Autogen  Open-Interpreter MetaGPT

Agents/Agent Frameworks Agents/Agent Frameworks

(a) Normalized throughput. Higher is better. (b) Normalized latency. Lower is better.
Figure 7: Efficiency analysis on different agent frameworks evaluated on the Mistral-7b
model on the HumanEval benchmark.



Alternative architectural patterns

Pattern Core Idea Best Used When Analogy

Agents share a common .

knowledge base (the ?r?rglimsoi;f,:;i;??j?;j:rlg t?:: Ee(r;eflt Shared whiteboard;
Blackboard “blackboard”) where each posts PP . L — ®8v leach specialist adds

. . perception-planning pipelines, scientific |, . .
System partial solutions or hypotheses. o . . insights until
. : data analysis with shared intermediate
A control shell decides which consensus.

agent acts next.

results.

Contract-Net

A manager agent broadcasts a
task; contractors bid based on

Resource allocation and scheduling
across distributed or heterogeneous

Job auction or

Protocol . . : dynamic
capability or cost; manager agents — e.g., selecting which lab, robot,
(CNP) . marketplace.
awards the task. or compute node runs a sub-experiment.
Agents (actors) commgnlcate When rel.la.b'lllty, debggglpg, or Directed graph of
Actor / Graph |through message passing along |reproducibility are priorities — e.g., cooperatin
Workflows explicit edges; control flow is workflow orchestration (LangGraph, Ray, P 8

deterministic and inspectable.

Dask) or multi-stage simulation chains.

workers.




Orchestration and Scale - Agents Meet HPC

* Long-running workflows: Scientific agents must persist across long
experiments, spanning hours, days, or even weeks of compute.

 Scalable inference: Applications may require many 1000s of LLM instances

* Fault tolerance: Agents should resume gracefully after GPU/LLM/API
failures via checkpointing and replay.

* Scalable compute integration: Agents must leverage HPC schedulers
(Slurm, PBS) to launch simulations, transfer data, and monitor progress.

* Hybrid orchestration: Combine interactive reasoning loops with queued
batch jobs — the “agent <> scheduler handshake.”

» System design challenge: How do we preserve agent autonomy while
embedding it in HPC-style reliability?



Three systems compared & contrasted

Axis

AutoGen

LangGraph

AlOS

Abstraction

Conversation-
programmed agents

Graph/state machine

OS-style runtime
(kernel + SDK)

Deterministic

. i i Schedulin
Primary Inter-agent dialog + orchestration, &,
) memory/context,
concern tools persistence,
. storage, access control
human-in-loop
State Conversation history + Explicit shared state Kernel-managed contexts/

tool results

object

memory

When to use

Fast prototyping of
multi-agent patterns

Production flows
needing reliability &
debuggability

Multi-tenant, long-running,
resource-intensive
deployments




From LangChain to AIOS: A stack for agentic science

LangChain

Multi-agent

LangGraph AutoGen AIOS
Control Programmatic | Graph-defined | Conversational Kernel-
scheduled
Scope Single agent Multi-step

Multi-system




From LangChain to AIOS: A stack for agentic science

Framework /
Layer Focus Analo
y Concept gy
. .. . Single-agent reasoning, tool “App logic” — a script that
Application LangChain ’
PP g use, ReAct loops calls the LLM and tools
Deterministic control-flow
Orchestration |LangGraph graphs, state persistence, Workflow engine
human-in-loop
. Multi-agent conversation, Distributed process
Collaboration | AutoGen 8 . P
planner—critic—executor roles management
Runtime / AIOS Kernel for scheduling, memory, |Operating system for

System

storage, access control

agents




High-level architecture of Advanced Research

Claude.ai chat Multi-agent research system
. What’s on your Userrequest
mind tonight? ’ Lead agent
T (orchestrator)
what are all the subagent — &—  Memory
companies in the Tools: search tools + MCP tools
united states_ working + memory + run_subagent +
on Al agents in 2025? complete_task

make a list of at Fitial Feboirt
least 100. for each P

: <
company, include
the name, website,
product, description

of what they do,

type of agents Search subagent Search subagent Search subagent
they build, and their

vertical/industry. U U U

The multi-agent architecture in action: user queries flow through a lead agent that creates

specialized subagents to search for different aspects in parallel.
https://www.anthropic.com/engineering/multi-agent-research-system



https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system

Benefits of a multi-agent system (Anthropic)

* “Multi-agent research systems excel especially for breadth-first
queries that involve pursuing multiple independent directions
simultaneously”

* “Multi-agent systems work mainly because they help spend enough
tokens to solve the problem”

* “multi-agent systems excel at valuable tasks that involve heavy
parallelization, information that exceeds single context windows, and
interfacing with numerous complex tools”

https://www.anthropic.com/engineering/multi-agent-research-system



https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system

Lessons learned (Anthropic)

* Think like your agents

* Teach the orchestrator how to delegate

* Scale effort to query complexity

* Tool design and selection are critical

* Let agents improve themselves

 Start wide, then narrow down

* Guide the thinking process

* Parallel tool calling transforms speed and performance

https://www.anthropic.com/engineering/multi-agent-research-system



https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system

Discussion questions

* Where should reasoning stop and system management begin?
* What belongs inside the agent vs. in the runtime?

* How do we ensure safety and reproducibility as agents gain
autonomy?

 Could scientific discovery platforms one day run on AlOS-like
kernels?



Scientist

The scientist interacts
with the system by
specifying a research
goal in natural language.
They can also suggest
their own ideas and
proposals, provide
feedback and reviews,
and interact via a chat
interface to guide the
co-scientist system.

\

Discuss via
chat interface

AI

Al co-scientist

The Al co-scientist
continuously generates,
reviews, debates, and
improves research
hypotheses and
proposals toward the
research goal provided
by the scientist.

Scientist inputs The Al co-scientist multi-agent system
~
ak Research plan Generation Agent —
Research goal configuration
Literature exploration
Saentls;“ de|scnbes v;th Simulated scientific debate
preferences, experiment Ranking Agent : | |
constraints, and other tournaments e
attributes. Full review with web search
Research hypotheses Simulation review
Add idea comparison and ranking :
S it with scientific debate in Tournament review
eview tournaments. Limitations Deep verification
Discuss research and top win-loss patterns
are summarized and -
provided as feedback to Beohuion S
other agents. This enables Inspiration from other ideas
Research proposals and iterative improvement in Simoiificati
overview quality of research bl ek
hypothesis generation Research extension
Top-ranked research creating a
hypotheses and proposals self-improving loop. Proximity Check Agent
are summarized into a G
research overview and - gent
shared with the scientist. e
e Research overview formulation

\
.

The Al co-scientist system design

scientist.

lllustration of the different components in the Al co-scientist multi-agent system and the interaction paradigm between the system and the



~ Research overview
- detailed hypotheses

l Assign agents to workers

~

Proximity Agent

Al co-scientist

Al co-scientist specialized agents

Al co-scientist system overview. Specialized agents (red boxes, with unique roles and logic); scientist input and feedback (blue boxes); system
information flow (dark gray arrows); inter-agent feedback (red arrows within the agent section).



Coscientist

1 The module does not use LLMs

Input prompt from scientist 3 B The module uses LLMs

Command used by LLM

| Coscientist
Google _
Search Agp| GOOGLE Physical world
hardware
Web searcher GOOGLE EXPERIMENT — Automation <~ * Cloud laboratory
e Liquid handler
Internet <—— BROWSE * Manual '
PYTHON DOCUMENTATION experimentation
Pl Docs index
Docker Code ; Retrieval and
container “—— submission — 1= Code execution Docs searcher e e gggﬂmaerr?ta?tli)oln
Performed experiments Searching for — Performing Generating - Controlling a liquid handler
to validate the agent organic syntheses cross-coupling reactions SLL code for - Using a liquid handler and
online — Optimizing reaction a cloud UV-Vis together

conditions laboratory

Liquid handler’s
pipettes

Heater-shaker
module

B Laptop, accessing

\ ’ a web server with
y y deployed Coscientist

https://doi.org/10.1038/s41586-023-06792-0



https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0

You have a source plate with three samples in unknown positions (yellow, blue, and red), each potentially

located in one of the wells (A1, B1l, and Cl). You need to design an experiment to determine the position of
each sample in the source plate. <setup description>

User prompt

Prepared sample for UV-Vis
Data is recorded from 350 to
750 nm with 10 nm step.

First, I will transfer a small amount of each sample from the source plate to separate wells in the target
plate. Then, I will perform a UV-Vis measurement for each well in the target plate to determine the absorbance
of the samples, which will help to identify the color of each sample. Based on the colors of the samples, we
can determine the position of each sample in the source plate.

EXPERIMENT

[ pelrensimpcit Snrotocel o In the code the Agent moves liquids from A1, B1,
' and C1 to A1, A2, and A3. Then it dilutes them.

# Perform UV-Vis measurement on the target plate
UWIS plate 1

Planner’s output

UV-Vis data from plate 1 is ready. You can access it using PYTHON, it will be in the file named
'platel.npy'. You will have NumPy installed. The file contains NumPy array of shape (8, 12, 41). There are
41 wavelengths from 350 to 750 with 10 nm step. Think about how would different colors absorb first.

Automated answer
+ guiding prompt

[530, 430, 630]

Automated answer

https://doi.org/10.1038/s41586-023-06792-0

Different colors absorb light at different wavelengths. Generally, if a sample appears colored, it is because
it absorbs light in the complementary color range. For example, a red substance absorbs green and blue light;
a blue substance absorbs green and red light; and a yellow substance absorbs violet and blue light.

First, I will load the UV-Vis data from the file 'platel.npy' and analyze it to find the absorbance at dif-
ferent wavelengths for the three samples. Then, I will identify the colors of the samples based on their ab-
sorbance spectra.

PYTHON
import numpy as np

print(samples_max_wavelength_nm)

The maximum absorbance wavelengths for the three samples are 530 nm, 430 nm, and 630 nm. Based on the absor-
bance spectra, we can deduce their colors:

1. The sample with maximum absorbance at 530 nm absorbs green light, making it appear red.
2. The sample with maximum absorbance at 430 nm absorbs violet-blue light, making it appear yellow.
3. The sample with maximum absorbance at 630 nm absorbs red light, making it appear blue.



https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0

