
AI Agents for Science

Instructor: Ian Foster
TA: Alok Kamatar

Crescat scientia; vita excolatur https://canvas.uchicago.edu/courses/67079
CMSC 35370 -- https://agents4science.github.io

Lecture 3, October 3: Systems for Agents

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

Curriculum
1) Why AI agents for science?

AI agents and the sense-plan-act-learn loop. Scientific Discovery Platforms (SDPs): AI-
native systems that connect reasoning models with scientific resources.

2) Frontiers of Language Models
Surveys frontier reasoning models: general-purpose LLMs (GPT, Claude), domain-
specific foundation models (materials, bio, weather), and hybrids. Covers techniques
for eliciting better reasoning: prompting, chain-of-thought, retrieval-augmented
generation (RAG), fine-tuning, and tool-augmented reasoning.

3) Systems for Agents
Discusses architectures and frameworks for building multi-agent systems, with
emphasis on inter-agent communication, orchestration, and lifecycle management.

4) Retrieval Augmented Generation (RAG) and Vector Databases
Covers how to augment reasoning models with external knowledge bases, vector
search, and hybrid retrieval methods.

From single-agent control → multi-agent
orchestration → system-level runtime
• LangGraph
• Reframes agents as explicit graphs with state, giving you determinism and

controllability for orchestration.

• AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent
Conversation
• Shows the conversation-centric paradigm for multi-agent apps (agents as

conversants; tool use via messages).

• AIOS: LLM Agent Operating System
• Treats agents as first-class OS-managed workloads with scheduling,

memory/context, storage, and access control—a lifecycle and runtime view at
system level; reports speedups from centralized resource management.

Langchain: A tool for building (simple) agents

“Agents combine language models with tools to create systems that
can reason about tasks, decide which tools to use, and iteratively
work towards solutions.”

https://github.com/langchain-ai/langchain

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain

LangChain supports two major paradigms (1/2)

1) Chains – deterministic, linear workflows
• A Chain is a fixed pipeline of LLM calls, prompt templates, retrievers, or other

components
• The developer defines the order and the control flow
• The model just fills in text or returns a result: It doesn’t decide what happens next

• The system runs a single pass: input → prompt → LLM → output
• There is no looping or tool selection

LangChain supports two major paradigms (2/2)
2) Agents – dynamic, ReAct-style loops
• An Agent wraps one or more tools; the model decides what to do next
• The LLM emits reasoning steps like:

• LangChain parses these, executes the matching Tool.func(), injects the “Observation”
back into the prompt, and calls the model again
• This forms a Reason → Act → Observe → Repeat loop until model outputs Final

Answer

Workflows: Systems where LLMs and tools are orchestrated through predefined code paths.
Agents: Systems where LLMs dynamically direct their own processes and tool usage, maintaining
control over how they accomplish tasks.

https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://www.anthropic.com/engineering/building-effective-agents Workflows vs. agents

https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents

Workflows
Building block: The augmented LLM

Workflows
Prompt chaining

Decompose a task into a sequence of steps, where each LLM call processes the
output of the previous one. You can add programmatic checks (see "gate” in the
diagram) on any intermediate steps to ensure that the process is still on track.

Workflows
Routing

Routing classifies an input and directs it to a specialized followup task. Allows for
separation of concerns, and building more specialized prompts. Otherwise,
optimizing for one kind of input can hurt performance on others.

Workflows: Evaluator-optimizer
Routing

One LLM call generates a response while another provides evaluation and
feedback in a loop

Built-in chains: e.g., “summarize chain”

Recall structure of a basic agent

• Initialize state and goals
• Repeat until termination:
• Sense: Gather observations from environment
• Plan: Evaluate goals and state, plan/select next action
• Act: Execute chosen action on environment
• Learn: Update internal state, memory, or model based on outcomes

In sequence: call tool, invoke LLM, test for termination; repeat

Agents

Agents begin their work with either a command from, or interactive
discussion with, the human user.
Once the task is clear, agents plan and operate independently, potentially
returning to the human for further information or judgement.
During execution, agents gain “ground truth” from the environment at
each step (such as tool call results or code execution) to assess progress.
Agents can pause for human feedback at checkpoints or when
encountering blockers.

Agents

ReAct loop with LangChain create-agent
ReAct frames an agent’s behavior as an interleaving of

 thought à action à observation

steps, where the model writes out its reasoning, picks
a tool, sees the tool’s result, and then repeats.

LangChain create_agent() can be used to implement
ReAct loops:

• It builds a graph-based agent runtime using
LangGraph, where a graph consists of nodes (steps)
and edges (connections) that define how your agent
processes information.

• The agent moves through this graph, executing
nodes like the model node (which calls the model)
& tools node (which executes tools)

The ReAct agent

In a ReAct agent (AgentType.ZERO_SHOT_REACT_DESCRIPTION):
• The LLM generates Thought → Action → Action Input → Observation blocks
• Each Tool is advertised via its description
• The model chooses an action name (e.g., "Summarizer") and passes arguments

(Action Input) as JSON-like text
• LangChain executes the corresponding Python function (func) and inserts the

result into the next prompt as an “Observation”

Example: Summarize Document via ReAct Loop

Simplified system prompt:

Step 1: LLM “reasons” in text

Step 2: LangChain parser detects the “Action”

Step 3: Observation returned to LLM

ReAct loop with LangChain create-agent

Call
get_weather

function

What is the weather
in San Fran?

Infor about
weather

Does reply
answer
question?

ReAct frames an agent’s behavior as an interleaving of

 thought à action à observation

steps, where the model writes out its reasoning, picks
a tool, sees the tool’s result, and then repeats.

LangChain create_agent() can be used to implement
ReAct loops:

• It builds a graph-based agent runtime using
LangGraph, where a graph consists of nodes (steps)
and edges (connections) that define how your agent
processes information.

• The agent moves through this graph, executing
nodes like the model node (which calls the model)
& tools node (which executes tools)

https://docs.langchain.com/oss/python/langchain/overview

A simple agent that can answer questions & call tools.

The agent has the following components:

• A language model (Claude 3.7 Sonnet)

• A simple tool (weather function)

• A basic prompt

• The ability to invoke it with messages

https://docs.langchain.com/oss/python/langchain/overview

“It’s sunny in San Francisco today!
The skies are clear, and you can
expect mild temperatures—around
68°F (20°C). Enjoy the beautiful
weather!”

“Today in Chicago, it’s sunny with clear skies and pleasant conditions. Enjoy your day outdoors!”

Query PubMed for ChatGPT
feedstock

Recall “Peptide Expert” example

Repeat until answer is satisfactory:

• Retrieve abstracts A from PubMed that
reference specified peptide

• Use ChatGPT to build hypotheses:
 “Given A, on which organism is

{peptide} acting?”

Arvind Ramanathan, Priyanka Setty, et al.

I.e.: query PubMed, and then call ChatGPT

ReAct loop with LangChain create-agent

Query
PubMed

re peptide

On which organism
does peptide act?

Docs that
reference
peptide

Hypotheses re action?
Good enough?

ReAct frames an agent’s behavior as an interleaving of

 thought à action à observation

steps, where the model writes out its reasoning, picks
a tool, sees the tool’s result, and then repeats.

LangChain create_agent() can be used to implement
ReAct loops:

• It builds a graph-based agent runtime using
LangGraph, where a graph consists of nodes (steps)
and edges (connections) that define how your agent
processes information.

• The agent moves through this graph, executing
nodes like the model node (which calls the model)
& tools node (which executes tools)

Build an agent with langchain

https://docs.langchain.com/oss/python/langchain/quickstart

https://docs.langchain.com/oss/python/langchain/quickstart

1. Detailed system prompts
2. Create tools
3. Model configuration
4. Structured output
5. Conversational memory
6. Create and run the agent

1. Detailed system prompts
2. Create tools
3. Model configuration
4. Structured output
5. Conversational memory
6. Create and run the agent
Tools let a model interact with
external systems by calling
functions you define.

Tools can depend on runtime
context and also interact with
agent memory

Notice below how the
get_user_location tool uses
runtime context

1. Detailed system prompts
2. Create tools
3. Model configuration
4. Structured output
5. Conversational memory
6. Create and run the agent

1. Detailed system prompts
2. Create tools
3. Model configuration
4. Structured output
5. Conversational memory
6. Create and run the agent

1. Detailed system prompts
2. Create tools
3. Model configuration
4. Structured output
5. Conversational memory
6. Create and run the agent

1. Detailed system prompts
2. Create tools
3. Model configuration
4. Structured output
5. Conversational memory
6. Create and run the agent

Summary of the example

Langchain allows our agent to:

• Perform tasks in sequence

• Understand context and remember conversations

• Use multiple tools intelligently

• Provide structured responses in a consistent format

• Handle user-specific information through context

• Maintain conversation state across interactions

LangGraph
“LangGraph is a low-level orchestration framework for building, managing, and deploying long-
running, stateful agents:

• Durable execution: Build agents that persist through failures and can run for extended
periods, resuming from where they left off.

• Human-in-the-loop: Incorporate human oversight by inspecting and modifying agent state at
any point.

• Comprehensive memory: Create stateful agents with both short-term working memory for
ongoing reasoning and long-term memory across sessions.

• Debugging with LangSmith: Gain deep visibility into complex agent behavior with
visualization tools that trace execution paths, capture state transitions, and provide detailed
runtime metrics.

• Production-ready deployment: Deploy sophisticated agent systems confidently with scalable
infrastructure designed to handle the unique challenges of stateful, long-running workflows.”

https://docs.langchain.com/oss/python/langgraph/overview

https://docs.langchain.com/oss/python/langgraph/overview

ReAct-style “reasoning +
acting + reflecting” loop in
LangGraph

LangGraph lets you represent
each step — “Reason”, “Act”,
“Observe”, and “Reflect” — as
nodes in a graph, connected by
conditional edges that can loop
until a termination condition is
met.

AutoGen for multi-agent LLM frameworks

Multi-agent systems

Why multiple agents
• Partition expertise
• Run in parallel
• Contain risk
• Govern data

Why multiple agents? (in more detail)
• Specialization improves quality: Narrow, role-tuned agents outperform generalists on

their slice
• Parallelism increases throughput: Independent agents work concurrently on sub-tasks
• Heterogeneous tools & environments: Different agents own different toolchains (HPC,

LIMS, robots, DBs)
• Robustness & fault isolation: One agent can fail, restart, or be replaced without taking

down the system
• Self-checking & consensus: Cross-agent critique, redundancy, and voting reduce error

and bias
• Long-running workflow control: Persistent agents watch queues, schedule jobs, and

resume after interruptions
• Governance, security, provenance: Data stays within the minimal-privilege agent;

actions are auditable by role
• Scalability & cost control: Orchestrators spawn cheap/ephemeral workers; premium

models only where needed

Challenges relating to multi-agent systems

• Creating agents
• Monitoring agents
• Inter-agent communication
• Monitoring agents/agent lifecycle

Perils of multiple agents – Why systems matter
Risk Area Description Mitigation

Coordination Chaos Agents loop, contradict, or
amplify each other’s errors.

Limit turn count, add
arbiter/watchdog agent.

Loss of Accountability Hard to trace which agent
caused errors or bias.

Log every message & decision;
require provenance.

Emergent Behavior Unpredictable dynamics—
agents invent new “protocols.”

Constrain roles and allowable
message types.

Security & Safety Tool calls, code exec, or API use
may cause harm.

Sandbox actions, validate outputs,
human approval.

Human Factors Over-trust, confusion, or
reduced oversight.

Keep humans in loop; clear UI for
agent reasoning.

Resource/Cost Blow-up Many agents → exponential
token and time costs.

Prune redundant roles; use
shared memory or caching.

How systems can help
• Scheduling & Fairness: Coordinated access to LLM cores, memory,

and tools (AIOS kernel)
• Isolation & Governance: Sandboxed agents with explicit privileges;

traceable syscalls
• Reproducibility: Logged context snapshots and deterministic replay

improve scientific auditability
• Safety & Oversight: Policy enforcement and user-intervention

checkpoints before critical actions
• Scalability: From a handful of agents to thousands sharing compute,

without chaos

“AutoGen: Enabling Next-Gen LLM
Applications via Multi-Agent Conversation”
AutoGen2 allows developers to build LLM applications via multiple
agents that can converse with each other to accomplish tasks.

AutoGen agents are customizable, conversable, and can operate in
various modes that employ combinations of LLMs, human inputs, and
tools.

Developers can also flexibly define agent interaction behaviors.

Both natural language and computer code can be used to program
flexible conversation patterns for different applications.

https://arxiv.org/pdf/2308.08155 See also https://github.com/microsoft/agent-framework

https://arxiv.org/pdf/2308.08155
https://github.com/microsoft/agent-framework
https://github.com/microsoft/agent-framework
https://github.com/microsoft/agent-framework

https://arxiv.org/pdf/2308.08155

AutoGen

https://arxiv.org/pdf/2308.08155

AutoGen: Multi-agent conversation

AutoGen enables LLM-driven applications composed of multiple
cooperating agents that communicate via structured conversations. Each
agent can represent a specialized role — such as planner, executor, critic,
or user proxy — and interact using natural language or code.

Conversation programming addresses computation (actions agents take
to compute their response in a conversation) and control flow (order
and conditions under which individual computations in the conversation
are executed or evaluate)

AutoGen — Multi-Agent Conversation Framework

• Key Features
• Conversational Orchestration: Tasks are decomposed and coordinated

through dialogue rather than fixed pipelines.
• Flexible Agent Roles: Agents can be LLMs, humans, or tool wrappers; each

follows its own prompt and behavioral policy.
• Hybrid Programming: Conversations can mix natural language, Python, and

tool calls — enabling “conversation-as-code.”
• Interoperability: Integrates easily with frameworks like LangChain and

supports tools, APIs, or custom function calls.
• Architecture Overview
• Planner Agent: Defines goals, breaks down tasks, delegates subtasks.
• Executor / Assistant Agents: Perform the work using tools or reasoning.
• Critic Agent: Evaluates outputs, flags errors, and proposes refinements.
• User Proxy: Represents human intent or feedback.

Example: “ProtAgents: Protein discovery via large
language model multi-agent collaborations”

• Planner: Determines what steps to take
• E.g., “design sequence à simulate

 à evaluate”
• Assistant: Can call tools
• E.g. structure predictors, physics simulators

• Critic: Reviews results, spots errors, suggests refinements
• User proxy: Receives human instructions

The multi-agent system generates candidate sequences, simulates their
mechanical / structural properties, critiques them, and iterates, aiming toward a
design goal (e.g., a protein with a particular vibrational frequency or stiffness)

https://arxiv.org/pdf/2402.04268

https://arxiv.org/pdf/2402.04268

AIOS: LLM Agent Operating System
• Proposes a comprehensive system-level architecture for serving large-language-

model-based agents
• introduces a kernel-based architecture that treats large language models (LLMs)

and their associated tools as first-class operating-system resources.

The AIOS “Agent OS kernel”
• Instead of allowing each agent framework (e.g., LangChain, AutoGen, ReAct) to

manage LLM calls, memory, and tools independently, AIOS provides a central “Agent
OS kernel” responsible for:
• Scheduling and multiplexing access to LLM resources

• Memory and storage management for agent state and context

• Tool management with validation and concurrency control

• Access control and user-confirmation safeguards

• An SDK layer (API interface) allowing agent developers to invoke “AIOS syscalls” instead of
managing resources directly

• A three-layer stack:
• Application layer: agent logic built via SDK APIs
• Kernel layer: AIOS kernel managing LLM, memory, tools, access
• Hardware layer: traditional OS and devices (CPU/GPU/memory)

• LLM cores are treated like CPU cores; agent requests become system calls; and a
scheduler orchestrates them

Evaluation

• Throughput: Up to 2.1× faster when multiple agents share limited
GPU resources

• Latency: Reduced by scheduler control and pre-emptive LLM
switching

• Scalability: Near-linear up to 2 000 agents

• Correctness: Context-switch BLEU / BERT = 1.0 → identical outputs
after interruption

Alternative architectural patterns
Pattern Core Idea Best Used When Analogy

Blackboard
System

Agents share a common
knowledge base (the
“blackboard”) where each posts
partial solutions or hypotheses.
A control shell decides which
agent acts next.

Problems are decomposable and benefit
from opportunistic collaboration — e.g.,
perception-planning pipelines, scientific
data analysis with shared intermediate
results.

Shared whiteboard;
each specialist adds
insights until
consensus.

Contract-Net
Protocol
(CNP)

A manager agent broadcasts a
task; contractors bid based on
capability or cost; manager
awards the task.

Resource allocation and scheduling
across distributed or heterogeneous
agents — e.g., selecting which lab, robot,
or compute node runs a sub-experiment.

Job auction or
dynamic
marketplace.

Actor / Graph
Workflows

Agents (actors) communicate
through message passing along
explicit edges; control flow is
deterministic and inspectable.

When reliability, debugging, or
reproducibility are priorities — e.g.,
workflow orchestration (LangGraph, Ray,
Dask) or multi-stage simulation chains.

Directed graph of
cooperating
workers.

Orchestration and Scale → Agents Meet HPC

• Long-running workflows: Scientific agents must persist across long
experiments, spanning hours, days, or even weeks of compute.
• Scalable inference: Applications may require many 1000s of LLM instances
• Fault tolerance: Agents should resume gracefully after GPU/LLM/API

failures via checkpointing and replay.
• Scalable compute integration: Agents must leverage HPC schedulers

(Slurm, PBS) to launch simulations, transfer data, and monitor progress.
• Hybrid orchestration: Combine interactive reasoning loops with queued

batch jobs — the “agent ↔ scheduler handshake.”
• System design challenge: How do we preserve agent autonomy while

embedding it in HPC-style reliability?

Three systems compared & contrasted

Axis AutoGen LangGraph AIOS

Abstraction Conversation-
programmed agents Graph/state machine OS-style runtime

 (kernel + SDK)

Primary
concern

Inter-agent dialog +
tools

Deterministic
orchestration,
persistence,
human-in-loop

Scheduling,
memory/context,
storage, access control

State Conversation history +
tool results

Explicit shared state
object

Kernel-managed contexts/
memory

When to use Fast prototyping of
multi-agent patterns

Production flows
needing reliability &
debuggability

Multi-tenant, long-running,
resource-intensive
deployments

LangChain LangGraph AutoGen AIOS

Control Programmatic Graph-defined Conversational Kernel-
scheduled

Scope Single agent Multi-step Multi-agent Multi-system

From LangChain to AIOS: A stack for agentic science

From LangChain to AIOS: A stack for agentic science

Layer Framework /
Concept Focus Analogy

Application LangChain Single-agent reasoning, tool
use, ReAct loops

“App logic” — a script that
calls the LLM and tools

Orchestration LangGraph
Deterministic control-flow
graphs, state persistence,
human-in-loop

Workflow engine

Collaboration AutoGen Multi-agent conversation,
planner–critic–executor roles

Distributed process
management

Runtime /
System AIOS Kernel for scheduling, memory,

storage, access control
Operating system for
agents

The multi-agent architecture in action: user queries flow through a lead agent that creates
specialized subagents to search for different aspects in parallel.

High-level architecture of Advanced Research

https://www.anthropic.com/engineering/multi-agent-research-system

https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system

Benefits of a multi-agent system (Anthropic)

• “Multi-agent research systems excel especially for breadth-first
queries that involve pursuing multiple independent directions
simultaneously”
• “Multi-agent systems work mainly because they help spend enough

tokens to solve the problem”
• “multi-agent systems excel at valuable tasks that involve heavy

parallelization, information that exceeds single context windows, and
interfacing with numerous complex tools”

https://www.anthropic.com/engineering/multi-agent-research-system

https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system

Lessons learned (Anthropic)

• Think like your agents
• Teach the orchestrator how to delegate
• Scale effort to query complexity
• Tool design and selection are critical
• Let agents improve themselves
• Start wide, then narrow down
• Guide the thinking process
• Parallel tool calling transforms speed and performance

https://www.anthropic.com/engineering/multi-agent-research-system

https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system

Discussion questions

• Where should reasoning stop and system management begin?
• What belongs inside the agent vs. in the runtime?
• How do we ensure safety and reproducibility as agents gain

autonomy?
• Could scientific discovery platforms one day run on AIOS-like

kernels?

Coscientist

https://doi.org/10.1038/s41586-023-06792-0

https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0

https://doi.org/10.1038/s41586-023-06792-0

https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0

