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Curriculum
1) Why AI agents for science?

AI agents and the sense-plan-act-learn loop. Scientific Discovery Platforms (SDPs): AI-
native systems that connect reasoning models with scientific resources.

2) Frontiers of Language Models
Surveys frontier reasoning models: general-purpose LLMs (GPT, Claude), domain-
specific foundation models (materials, bio, weather), and hybrids. Covers techniques 
for eliciting better reasoning: prompting, chain-of-thought, retrieval-augmented 
generation (RAG), fine-tuning, and tool-augmented reasoning.

3) Systems for Agents
Discusses architectures and frameworks for building multi-agent systems, with 
emphasis on inter-agent communication, orchestration, and lifecycle management.

4) Retrieval Augmented Generation (RAG) and Vector Databases
Covers how to augment reasoning models with external knowledge bases, vector 
search, and hybrid retrieval methods.



Readings

• Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

• The FAISS library
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Query PubMed for ChatGPT 
feedstock

Recall example: A peptide expert 
(Prototyped with PubMed and ChatGPT)

Retrieve abstracts A from PubMed that 
reference specified peptide 

Use ChatGPT to build hypotheses by 
using retrieval-augmented generation: e.g.:
   “Given A, on which organism is {peptide} 
    acting?”

Arvind Ramanathan, Priyanka Setty, et al.



The basic idea behind RAG

Q: “Which known drugs might modulate the FXN gene pathway?”

SYSTEM: Use only the following context to propose candidate drugs.
CONTEXT:
[Document 1...]
[Document 2...]
QUESTION: Which known drugs might modulate the FXN gene pathway?

The LLM provides a more accurate answer because it has access to accurate and 
pertinent information 



https://arxiv.org/pdf/2312.10997 

https://arxiv.org/pdf/2312.10997


Questions
Q: “Which known drugs might modulate the FXN gene pathway?”

We have many documents (e.g., PubMed papers, internal documents, medical 
records). How can we use this corpus to help the model answer our query?

• What information is relevant? 

• How do I find that information? 

• How much information should I provide? 

• What is the best way to present that information? 

• How do I evaluate performance?

• How do I handle information of different types?



“Which known drugs might modulate the FXN gene 
pathway?” -- Which documents are relevant?
• We can search on metadata or on text matches: e.g., articles for 

which the title or the body text includes the word “FXN”
• But we want to find papers that discuss “related topics”: e.g., drugs 

that modulate related gene pathways, or that describe “modulation 
of the FXN gene pathway” but using different words
• Computers don’t understand meaning: they store text as strings
• They can check equality (“cat” vs. “dog”), but not that both are animals

• We want a way to represent words and sentences so that similar 
meanings are close together



BM25 (“Best Matching 25”)
• A widely used lexical retrieval algorithm that scores documents based 

on the frequency of query terms in each document, adjusted for term 
importance (IDF) and document length:

score(𝑞, 𝑑) =(
!∈#

IDF 𝑡 ⋅
𝑓(𝑡, 𝑑) ⋅ 𝑘$ + 1

𝑓(𝑡, 𝑑) + 𝑘$ ⋅ 1 − 𝑏 + 𝑏 ⋅∣ 𝑑 ∣/avgdl

• Where:
• 𝑓 𝑡, 𝑑 : frequency of term t in document d Boosts relevance
• ∣ 𝑑 ∣: document length    Prevents long docs dominating
• avgdl: average document length in corpus
• 𝑘!: term-frequency scaling factor (≈ 1.2–2.0)
• 𝑏: length normalization factor (≈ 0.75)
• IDF(t): inverse document frequency = log "#$!%&.(

$!%&.(
   Downweights common words



Distributional Hypothesis
• Words that occur in the same contexts tend to have similar meanings 

(Harris, 1954*)
• One of the most successful ideas in modern NLP
• Greatly boosts performance if used correctly 
• Idea: Count the co-occurrence of tokens, e.g., within sentences

Iryna Gurevych, 2017 * https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520 

https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520


Distributional Hypothesis
• E.g., we might find upon scanning a large corpus that: 
• Bill Gates often appears next to “Microsoft,” “philanthropy,” “billionaire.”
• Warren Buffett co-occurs with “investor,” “billionaire,” “fortune”
• Ethiopia and Sierra Leone co-occur with “developing,” “poverty,” “Africa”

• The frequency and context of those pairings can be used to infer 
relationships: who or what tends to be associated with wealth or poverty, 
people or countries, etc.

ric
h

Bill Gates

Ethiopia

poor

Sierra Leone

Warren Buffet

Iryna Gurevych, 2017 * https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520 

https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520


Representing meaning as 
points in space
• Turn each piece of text (word, 

sentence, paragraph) into a list 
of numbers: can be interpreted 
as a vector
• Similar meanings → similar 

vectors. E.g.:
• cat → [0.7, 0.1, 0.2]
• dog → [0.69, 0.09, 0.18]
• car → [-0.4, 0.8, 0.3]

Text → vector → position in a “semantic space”

Distances:
• d(”cat", ”dog") → 0.2
• d(”cat", ”car") → 1.3

Cosine similarities:
• cosine(”cat", ”dog") → 0.9
• cosine(”cat", ”car") → -0.2



Learning the geometry of language

• Nowadays we don’t count co-occurences. Instead, we train an 
embedding model (a small neural network) to place words or 
sentences in this space

• During training, the model learns that:
• Words appearing in similar contexts (“doctor” and “nurse”) should be close
• Words with different contexts (“doctor” and “banana”) should be far apart

• The result: a map where distance ≈ semantic difference



Training embedding models (in brief!)

Embedding models are trained by showing them examples of texts that 
belong together and those that don’t, and teaching them, through loss 
functions, to make the first pair close and the second pair distant in 
vector space.

1) Word-level embeddings (e.g., Word2Vec Skip-gram):
• Input: a target word
• Predict: its neighboring words (context)
• The network adjusts word vectors so that words appearing in similar contexts 

(e.g., “doctor”, “nurse”) have similar embeddings



2) Sentence-level embeddings (e.g., 
Sentence-BERT, OpenAI Embeddings)
• Use a contrastive loss

• Given pairs (anchor, positive, negative):
anchor = "What is photosynthesis?"
positive = "The process by which plants make food using sunlight."
negative = "The capital of France is Paris."

• The model encodes all three and minimizes:
• distance(anchor, positive) << distance(anchor, negative)



Using the map

The geometry of this space encodes meaning relationships. You can use 
it to, for example:
• Find similar meanings (“synonyms” → nearest neighbors)
• Retrieve relevant documents (e.g., RAG systems)
• Solve analogies:
• vector("king") - vector("man") + vector("woman") ≈ vector("queen")



Finding relevant information, revisited

We have a large collection of documents (e.g., PubMed papers, internal 
documents, medical records). How do we identify what parts of this corpus 
help answer that query?

1) Partition corpus into smaller chunks, and compute embedding for each

2) Compute an embedding for the query, and then:
• Find chunks that are “near” the query in embedding space
• Rank and return top-k
• Select from top-k to provide to LLM







Retrieval agent

A retrieval agent that decides whether 
to retrieve context from a vectorstore or 
respond to the user directly.
• Fetch and preprocess documents that 

will be used for retrieval
• Index those documents for semantic 

search and create a retriever tool for 
the agent

• Build an agentic RAG system that can 
decide when to use the retriever tool



Agentic RAG with LangGraph

https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag/ 

https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag/
https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag/
https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag/




Index chunks into a vector 
store to use for semantic 
search.



Generate query



Ask a question that requires semantic search 







RAG summarized

• Why RAG? Ground LLM reasoning in external knowledge to improve 
factuality, recency, provenance
• How it works: Embed → Retrieve → (Re-rank) → Generate → Cite
• Encode documents → store in vector DB (ANN index)
• Encode query → search top-k nearest vectors via ANN
• Return candidates → re-rank or feed to generator

• Key levers: Chunking, embedding choice, index type (HNSW/IVF-PQ), 
filters, hybrid retrieval, re-ranking (cross-encoders), answer grounding
• Measure what matters: retrieval quality (Recall@k, nDCG), answer 

groundedness & citation quality (RAG-specific evals)



RAG: Core ideas and lineage

• RAG combines parametric LM with non-parametric document index
• Canonical formulation: retrieve passages (dense retriever); condition generation 

on them; 

• Prior to 2020, open-domain QA was dominated by lexical retrieval 
methods based on lexical overlap
• Failed when vocabulary differs: E.g., ”Where did Einstein study?” vs. “Einstein 

attended the Polytechnic Institute in Zurich

• In 2020, Dense Passage Retriever (DPR) introduced vector encoding to 
retrieve semantically similar text even without shared words
• Common to train two encoders, one for question and one for passage
• Pre-encode passages



Vector search at scale: ANN indexes & libraries

• When we perform retrieval in RAG systems, we often have millions or 
billions of document embeddings stored as high-dimensional vectors
• Naively comparing a query vector to every stored vector is O(N): far too slow 

for real-time applications

• Thus we use Approximate Nearest Neighbor (ANN) indexing
• Data structures that find “good enough” nearest vectors orders of magnitude 

faster than exhaustive search



HNSW (Hierarchical Navigable Small World Graph)

• Build a multi-layer graph where each node is a 
vector, and edges connect it to its neighbors

• Higher layers form a small-world network: 
sparse connections that allow long “jumps” 
across space

• At query time:
• Start from an entry point in the top layer
• Greedily descend layer by layer, following 

edges toward vectors closer to the query
• The process efficiently zeroes in on a local 

neighborhood of similar vectors

https://arxiv.org/abs/1603.09320 * 

https://arxiv.org/abs/1603.09320


FAISS: Facebook AI Similarity Search

Type Description When to use
Flat (brute-force) Exact search; O(N) Small datasets (≤100k vectors)
IVF (Inverted File 
Index)

Clusters vectors into “centroids”; 
search only nearby clusters Millions of vectors

IVF-PQ (Product 
Quantization)

Compress vectors for memory 
efficiency Billion-scale datasets

HNSW Graph-based ANN for high recall Mid-sized (up to 100M) datasets

• An open-source C++/Python library for large-scale vector search
• Supports multiple ANN algorithms (including IVF, HNSW, Product Quantization)
• Runs on CPU or GPU, enabling extremely fast batched searches
• Provides exact search for small datasets and compressed approximate search 

for billion-scale corpora.



Refining RAG

• (We have seen) Semantic matching
• Use dense embeddings to find text semantically close to the query, not just 

keyword overlaps. E.g., text-embedding-3-large, bge-large-en, E5-mistral
• Metadata filtering
• Tag chunks with source, date, or domain attributes; filter by those (e.g., WHERE 

doc_type="paper")
• Hybrid retrieval: combine semantic and lexical
• (And) Context-aware retrieval
• For multi-hop or compound questions, run query expansion or decomposition
• E.g., “Explain the impact of solar flares on aviation” → subqueries: “What are solar 

flares?” + “How do they affect aviation systems?”



Hybrid retrieval
• Combining BM25 + dense retrieval often yields higher recall and 

better robustness across domains
• BM25: excels at exact lexical overlap: Robust when query terms match 

document vocabulary
• Dense retrievers: capture semantic similarity: Strong when paraphrases or 

synonyms appear
• Run both retrievers independently, obtain ranked lists of candidate 

documents, and merge them into a single unified ranking
• Use Reciprocal Rank Fusion (RRF)  to combine the two scores (rewards 

consensus)

S = set of retrieval systems (e.g., {BM25, DenseRetriever})
rank! 𝑑 = rank position of document d in system s’s result list (1 = top)
𝑘 = smoothing constant (commonly 60)



https://arxiv.org/pdf/2312.10997 

https://arxiv.org/pdf/2312.10997


https://arxiv.org/pdf/2312.10997 

RAG research first 
focused on leveraging 
the powerful in- context 
learning abilities of 
LLMs in the inference 
stage. Subsequent 
research delved deeper, 
gradually integrating 
more with the fine-
tuning of LLMs. 
Researchers have also 
explored enhancing 
language models in the 
pre-training stage 
through retrieval-
augmented techniques.

https://arxiv.org/pdf/2312.10997


Fine tuning, in brief
Fine tuning refines a pre-trained model’s weights on domain-specific or task-
specific examples to improve accuracy, style, or reasoning
• Collect (prompt → ideal response) pairs
• Train with gradient descent on supervised or RL objectives to update model weights
• Validate and deploy new model checkpoint

Type Purpose
Supervised fine-tuning (SFT) Teach format, reasoning, tone
Instruction tuning Align with human prompts
Domain tuning Specialize to specific domains
LoRA / PEFT Lightweight, adapter-based updates



RAG and fine-tuning

Fine-tuning: Train it on examples like:
• Prompt: “Answer using only the context provided. Always cite sources.”

Input: Retrieved documents + question
Output: Grounded, cited response.
• Teaches how to use retrieved evidence, not what facts are true

RAG layer: Supplies up-to-date scientific papers, sensor logs, or lab 
notebooks at inference time

The model has learned how to integrate evidence but depends on RAG to 
fetch the right evidence



RAG and pre-training

• Most RAG systems add retrieval after pre-training (during inference or fine-
tuning).

• Recent research explores injecting retrieval into the pre-training stage 
itself, so the model learns to read and reason with external memory from 
the start

• During pre-training, instead of predicting the next token from a static 
context, the model is periodically allowed to:
• Issue a retrieval query based on its current hidden state.
• Pull in relevant text passages from a large external corpus (Wikipedia, web 

documents, scientific papers).
• Incorporate retrieved evidence before continuing token prediction.
• This makes retrieval part of the model’s learning loop, not just a bolt-on module.



https://arxiv.org/pdf/2312.10997 

https://arxiv.org/pdf/2312.10997


Retrieval augmentation processes. Iterative retrieval involves alternating between retrieval and generation, 
allowing for richer and more targeted context from the knowledge base at each step. Recursive retrieval involves 
gradually refining the user query and breaking down the problem into sub-problems, then continuously solving 
complex problems through retrieval and generation. Adaptive retrieval focuses on enabling the RAG system to 
autonomously determine whether external knowledge retrieval is necessary and when to stop retrieval and 
generation, often utilizing LLM-generated special tokens for control. https://arxiv.org/pdf/2312.10997 

https://arxiv.org/pdf/2312.10997


https://arxiv.org/pdf/2312.10997 

https://arxiv.org/pdf/2312.10997


Re-ranking

Cheap, approximate Expensive, accurate

After a retriever returns the top-k candidate documents for a query, we may want 
to sort them by how relevant they truly are



Re-ranking approaches: CrossEncoder
• Bi-Encoders produce for a given 

sentence a sentence embedding. 
We pass to a BERT independently 
the sentences A and B, which result 
in the sentence embeddings u and v. 
These sentence embedding can then 
be compared using cosine similarity

• For a Cross-Encoder, we pass both 
sentences simultaneously to the 
Transformer network. It produces 
then an output value between 0 and 
1 indicating the similarity of the 
input sentence pair.

https://sbert.net/examples/cross_encoder/applications/README.html 

https://sbert.net/examples/cross_encoder/applications/README.html


query = "Who discovered penicillin?"

top_candidates = [
    "Alexander Fleming observed mold inhibiting bacterial growth in 1928 and named the 
substance penicillin.",
    "Marie Curie discovered radioactivity and won two Nobel Prizes for her pioneering 
work in physics and chemistry.",
    "Howard Florey and Ernst Chain later purified penicillin and developed it into a drug 
used to treat infections.",
    "Penicillin is an antibiotic that works by weakening bacterial cell walls, leading to cell 
rupture.",
    "In 1928, a Scottish scientist noticed that Staphylococcus colonies failed to grow near a 
certain mold contaminant."
]





7.497  |  Howard Florey and Ernst Chain later purified penicillin and developed it into a ...
7.367  |  Alexander Fleming observed mold inhibiting bacterial growth in 1928 and named th...
-0.186  |  Penicillin is an antibiotic that works by weakening bacterial cell walls, leadin...
-6.691  |  Marie Curie discovered radioactivity and won two Nobel Prizes for her pioneering...
-9.254  |  In 1928, a Scottish scientist noticed that Staphylococcus colonies failed to gro...



Evaluation: How well did we do?
(1) Retrieval

How often and how soon is “correct” doc identified?

• Recall@k: Fraction of time in top k results

• Mean Reciprocal Rank (MRR): Fraction of time is #1

• Normalized Discounted Cumulative Gain (nDCG): relevance and
rank position across multiple  relevant results,
where relᵢ is graded relevance of item i
and IDCG is ideal DCG score

All computed over multiple datasets: e.g., Benchmark for Information 
Retrieval (BEIR)



After retrieval and re-ranking, the generation step decides whether the proposed 
answer is faithful, grounded, and properly attributed to evidence
A) Faithfulness / Groundedness
• Definition: How well does the generated answer stick to facts found in the 

retrieved documents?
• Goal: Prevent hallucination, i.e., the model inventing unsupported claims
• Checks:

• Does every factual statement appear (or logically follow) from retrieved passages?
• Are external claims absent unless supported by context?

• Metrics:
• Precision of grounded facts (fraction of statements supported by retrieved docs).
• Factual consistency via automatic entailment models or LLM-based judges.

• Example: If context says, “Alexander Fleming discovered penicillin in 1928”
and the model answers, “Fleming discovered penicillin in 1929” → unfaithful

Evaluation: How well did we do?
(2) Generation



B) Answer-context overlap
• Definition: Measures how much of the generated answer’s content 

directly overlaps or semantically aligns with retrieved evidence.
• Purpose: Quantifies how much the model actually uses the retrieved 

material rather than free-associating.
• Methods:
• Compute token overlap, semantic similarity, or sentence-level 

entailment between generated answer and concatenated context
• Higher overlap ≈ better grounding, but too high may mean copy-

paste rather than synthesis

Evaluation: How well did we do?
(2) Generation



C) Citation Attribution
• Definition: Evaluates whether the model’s citations (e.g., numbered or 

inline references) correctly point to passages that support the claim
• Why it matters: Critical for scientific, medical, or legal RAG—users must 

trace every fact to its source
• Checks:
• Each citation corresponds to a retrieved document
• The cited text actually supports the associated statement
• No “phantom” citations (referencing non-existent or irrelevant docs)

Evaluation: How well did we do?
(2) Generation



Toolkits for Generation Evaluation
RAGAS – Retrieval Augmented Generation Assessment Suite
• Developed by Hugging Face & Intel Labs.
• Automated scoring of RAG outputs across:
• Faithfulness (are answers grounded?)
• Answer relevance
• Context recall (did the retriever fetch needed info?)
• Context precision (was retrieved info actually used?)

• Uses a smaller LLM or NLI (natural-language inference) model for evaluation.
• Produces interpretable scores per query.
• Integrates easily into LangChain, LlamaIndex, or Hugging Face pipelines:



Toolkits for Generation Evaluation

TruLens – Evaluation & Monitoring Framework for LLM Apps
• Evaluates RAG systems along three axes:
• Relevance – retrieved documents match the query.
• Groundedness – generated output is supported by evidence.
• Correctness – final answer addresses the question accurately.

• Plugs into LangChain and LlamaIndex pipelines.
• Logs each query–context–generation triplet.
• Provides interactive dashboards to visualize scores and detect 

hallucinations



Example evaluation loop*

* I have not tried this



Retrieval and generation metrics assess intermediate quality. End-to-
end (E2E) evaluation measures final task success: i.e., does the system 
deliver correct, useful, efficient answers for real users?
• Overall effectiveness: Accuracy, F1, precision/recall
• User-perceived quality: faithfulness, helpfulness, fluency
• Operational metrics: latency, cost, reliability

Evaluation: How well did we do?
(3) End-to-end

Task Type Metric Description
QA / factoid Accuracy % answers exactly match gold standard
Multi-fact reasoning F1, EM (Exact Match) Combine precision & recall on answer tokens
Summarization / synthesis ROUGE, BLEU, BERTScore Compare to human summaries
Information extraction Precision / Recall / F1 Correct entities or relations extracted
Scientific / analytical RAG Task-specific metric e.g., % hypotheses supported, % correct citations



How to Present Retrieved Context
Dimension Choices / Variants Why it matters

Number of passages (k) small (e.g. 3–5) vs large (10–50) Too many distracts; too few 
misses evidence.

Passage ordering by relevance, recency, diversity, 
random

Position bias in the LLM’s 
attention.

Pruning / compression full text vs selective sentences 
vs attention-pruned snippets

Reduces noise and context 
window usage (AttentionRAG).

Partitioning / batch 
context

chunk into blocks, rotate, 
interleave

Helps avoid “lost in the middle” 
(BriefContext).

Highlighting / markup highlight query-aligned spans, 
bold keywords

Draws LLM attention to 
important parts.

Citation tags or labels prepend “Doc #1: …”, insert 
inline “(see Doc 3)” markers

Encourages traceability and 
provenance.

Hybrid context forms mix text with table, graph, 
image contexts

Multi-modal retrieval + 
presentation.



https://arxiv.org/pdf/2503.10720 

https://arxiv.org/pdf/2503.10720


https://arxiv.org/pdf/2503.10720 

https://arxiv.org/pdf/2503.10720


Zhang et al. (2025) 
on “BriefContext” expl
ore how the order 
and mix of retrieved 
passages in context 
influence 
performance. They 
show that distributing 
“key information” 
across shorter, well-
ordered context 
batches outperforms 
naive concatenation in 
many biomedical QA 
tasks



Beyond textual data
Data type Examples What the LLM must learn/do

Structured Databases, CSVs, SQL engines Generate and interpret queries, 
aggregate results

Temporal / time-
series Sensors, logs, climate records Learn temporal reasoning; perform 

trend analysis

Spatial / geospatial Maps, satellite imagery Call GIS APIs; reason with coordinates 
and regions

Scientific / numeric Simulation codes, lab data, HPC 
runs

Request parameters, launch 
computations, interpret results

Multimodal Images, spectra, molecules, 
graphs

Use embeddings or model adapters 
per modality

Private / dynamic Company or lab databases, 
instruments

Handle authentication, provenance, 
and freshness



SMURF: Scientific MUltimodal Retrieval in Federations
Song Young Oh et al.

Multimodal RAG



Multi-modal RAG vs. database adapters

Say we want an AI assistant to answer: “Show me examples of catalysts 
that perform well at 200 °C for CO₂ conversion, and include any 
microscopy images showing the catalyst surface.”



Approach 1: Multi-modal RAG
• The system encodes both text (papers, lab notes) and images (SEM/TEM micrographs) into 

a shared embedding space (e.g., with CLIP or BLIP-2)

• At query time, the LLM embeds the question and retrieves semantically related text+image 
pairs from a vector database; LLM reads and reasons over those retrieved items to generate a 
natural-language answer, perhaps with thumbnails and captions

• Pros
• Semantic flexibility: Handles vague or descriptive queries (“roughly spherical nanoparticles”) even if keywords differ

• Cross-modal grounding: Can reason jointly about visuals and text (“the rough surface in the micrograph corresponds 
to higher activity”)

• Unifies unstructured knowledge: Works when data live in PDFs, figures, reports, not in a structured schema

• Cons
• Imprecise for numeric or filtering queries: “Temperature > 200 °C” is hard to enforce via embeddings

• Heavy retrieval & model cost: Storing and comparing high-dimensional embeddings for many images is expensive

• Weak provenance: Citations and data lineage are harder to guarantee because similarity search is probabilistic



Approach 2: Database adapter (structured query) 
• The LLM converts the natural-language query into a structured query (e.g., SQL or 

GraphQL) against a curated experimental database
• The database returns precise numeric results: reaction conditions, yields, temperatures. 

The LLM may then call another retrieval or visualization tool to fetch related images or 
metadata for the selected entries.
• Pros

• High precision, deterministic filtering and aggregation (“temperature > 200 °C AND efficiency > 85%”)
• Strong provenance and reproducibility: Every number ties back to a row in a controlled dataset
• Lower latency / smaller footprint for large numeric datasets

• Cons
• Rigid schema: Cannot easily handle free-form reports or unlabeled images.
• Limited semantic generalization: Fails if user asks in novel phrasing or wants reasoning across multiple 

modalities
• Requires data engineering: Tables, schema, and API integration must exist



In practice, may want to combine both

• Use database adapters for quantitative filtering and verified facts.
• Use multi-modal RAG to bring in contextual evidence (plots, figures, 

methods) and generate an integrated explanation
• For example:
• Query DB for catalysts > 200 °C → retrieve 5 records
• RAG retrieves micrographs + paper excerpts
• LLM synthesizes report with citations and visuals



System / Year Retrieval Innovation Generation / Integration Strategy
RAG 
(Lewis et al., 2020)

Dense Passage Retriever (DPR) encodes 
queries & documents into vector space for 
semantic similarity

One-shot retrieval → LLM conditions 
generation directly on top-k passages

FiD – Fusion-in-
Decoder (Izacard & 
Grave 2021)

Retrieve many passages independently 
(often > 50)

Decoder jointly attends to all retrieved 
passages, fusing their evidence during 
generation

HyDE – Hypothetical 
Document Expansion 
(Gao et al. 2023)

Generate a synthetic “ideal answer” → 
embed → retrieve nearest real docs

Generator guided by retrieved real docs but 
seeded by synthetic passage

Self-RAG 
(Asai et al. 2023)

Model autonomously decides when / 
whether / what to retrieve using special 
control tokens

Alternates between retrieval ↔ generation 
within one reasoning loop (self-critique and 
revision)

GraphRAG 
(Edge et al. 2024)

Retrieves graph nodes & edges instead of 
text chunks (knowledge-graph retrieval).

Generator reasons over structured entities and 
relations to compose graph-grounded answers.

LongRAG 
(Jiang et al. 2024)

Retrieves larger, semantically grouped or 
hierarchical chunks optimized for long-
context models

Uses long-context generation (4k–32k tokens) 
to synthesize broader evidence windows

RAG landscape: Variants and evolution



RAG pitfalls
• Context window overflow / truncation

• When too many retrieved tokens exceed the LLM’s context limit, older or less-recent 
chunks get silently dropped, causing loss of critical information or incoherent answers

• Irrelevant retrieval hurting generation
• Poorly matched passages can mislead the model’s reasoning, pulling the answer toward 

unrelated topics or introducing factual noise

• Citation hallucination
• The model fabricates references or associates statements with the wrong source, creating 

false confidence and undermining provenance

• Embedding drift when corpora evolve
• Updating or re-embedding documents with a new model or altered data distribution 

changes their vector geometry, breaking previous similarity relationships and degrading 
retrieval accuracy


