
AI Agents for Science

Instructor: Ian Foster
TA: Alok Kamatar

Crescat scientia; vita excolatur https://canvas.uchicago.edu/courses/67079
CMSC 35370 -- https://agents4science.github.io

Lecture 4, October 8: Retrieval Augmented Generation

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

Curriculum
1) Why AI agents for science?

AI agents and the sense-plan-act-learn loop. Scientific Discovery Platforms (SDPs): AI-
native systems that connect reasoning models with scientific resources.

2) Frontiers of Language Models
Surveys frontier reasoning models: general-purpose LLMs (GPT, Claude), domain-
specific foundation models (materials, bio, weather), and hybrids. Covers techniques
for eliciting better reasoning: prompting, chain-of-thought, retrieval-augmented
generation (RAG), fine-tuning, and tool-augmented reasoning.

3) Systems for Agents
Discusses architectures and frameworks for building multi-agent systems, with
emphasis on inter-agent communication, orchestration, and lifecycle management.

4) Retrieval Augmented Generation (RAG) and Vector Databases
Covers how to augment reasoning models with external knowledge bases, vector
search, and hybrid retrieval methods.

Readings

• Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

• The FAISS library

AI-native Scientific Discovery Platform

Reasoning
Core

Thought-action fabric

Knowledge
substrate

Memory Trust layer
Vector query retrieves
Cu(100), Cu–Ag, Cu–Fe papers +
Materials Project surfaces

2 mins

Automated
laboratories

1st principles
models

Domain
FMs

Query PubMed for ChatGPT
feedstock

Recall example: A peptide expert
(Prototyped with PubMed and ChatGPT)

Retrieve abstracts A from PubMed that
reference specified peptide

Use ChatGPT to build hypotheses by
using retrieval-augmented generation: e.g.:
 “Given A, on which organism is {peptide}
 acting?”

Arvind Ramanathan, Priyanka Setty, et al.

The basic idea behind RAG

Q: “Which known drugs might modulate the FXN gene pathway?”

SYSTEM: Use only the following context to propose candidate drugs.
CONTEXT:
[Document 1...]
[Document 2...]
QUESTION: Which known drugs might modulate the FXN gene pathway?

The LLM provides a more accurate answer because it has access to accurate and
pertinent information

https://arxiv.org/pdf/2312.10997

https://arxiv.org/pdf/2312.10997

Questions
Q: “Which known drugs might modulate the FXN gene pathway?”

We have many documents (e.g., PubMed papers, internal documents, medical
records). How can we use this corpus to help the model answer our query?

• What information is relevant?

• How do I find that information?

• How much information should I provide?

• What is the best way to present that information?

• How do I evaluate performance?

• How do I handle information of different types?

“Which known drugs might modulate the FXN gene
pathway?” -- Which documents are relevant?
• We can search on metadata or on text matches: e.g., articles for

which the title or the body text includes the word “FXN”
• But we want to find papers that discuss “related topics”: e.g., drugs

that modulate related gene pathways, or that describe “modulation
of the FXN gene pathway” but using different words
• Computers don’t understand meaning: they store text as strings
• They can check equality (“cat” vs. “dog”), but not that both are animals

• We want a way to represent words and sentences so that similar
meanings are close together

BM25 (“Best Matching 25”)
• A widely used lexical retrieval algorithm that scores documents based

on the frequency of query terms in each document, adjusted for term
importance (IDF) and document length:

score(𝑞, 𝑑) =(
!∈#

IDF 𝑡 ⋅
𝑓(𝑡, 𝑑) ⋅ 𝑘$ + 1

𝑓(𝑡, 𝑑) + 𝑘$ ⋅ 1 − 𝑏 + 𝑏 ⋅∣ 𝑑 ∣/avgdl

• Where:
• 𝑓 𝑡, 𝑑 : frequency of term t in document d Boosts relevance
• ∣ 𝑑 ∣: document length Prevents long docs dominating
• avgdl: average document length in corpus
• 𝑘!: term-frequency scaling factor (≈ 1.2–2.0)
• 𝑏: length normalization factor (≈ 0.75)
• IDF(t): inverse document frequency = log "#$!%&.(

$!%&.(
 Downweights common words

Distributional Hypothesis
• Words that occur in the same contexts tend to have similar meanings

(Harris, 1954*)
• One of the most successful ideas in modern NLP
• Greatly boosts performance if used correctly
• Idea: Count the co-occurrence of tokens, e.g., within sentences

Iryna Gurevych, 2017 * https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520

https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520

Distributional Hypothesis
• E.g., we might find upon scanning a large corpus that:
• Bill Gates often appears next to “Microsoft,” “philanthropy,” “billionaire.”
• Warren Buffett co-occurs with “investor,” “billionaire,” “fortune”
• Ethiopia and Sierra Leone co-occur with “developing,” “poverty,” “Africa”

• The frequency and context of those pairings can be used to infer
relationships: who or what tends to be associated with wealth or poverty,
people or countries, etc.

ric
h

Bill Gates

Ethiopia

poor

Sierra Leone

Warren Buffet

Iryna Gurevych, 2017 * https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520

https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520

Representing meaning as
points in space
• Turn each piece of text (word,

sentence, paragraph) into a list
of numbers: can be interpreted
as a vector
• Similar meanings → similar

vectors. E.g.:
• cat → [0.7, 0.1, 0.2]
• dog → [0.69, 0.09, 0.18]
• car → [-0.4, 0.8, 0.3]

Text → vector → position in a “semantic space”

Distances:
• d(”cat", ”dog") → 0.2
• d(”cat", ”car") → 1.3

Cosine similarities:
• cosine(”cat", ”dog") → 0.9
• cosine(”cat", ”car") → -0.2

Learning the geometry of language

• Nowadays we don’t count co-occurences. Instead, we train an
embedding model (a small neural network) to place words or
sentences in this space

• During training, the model learns that:
• Words appearing in similar contexts (“doctor” and “nurse”) should be close
• Words with different contexts (“doctor” and “banana”) should be far apart

• The result: a map where distance ≈ semantic difference

Training embedding models (in brief!)

Embedding models are trained by showing them examples of texts that
belong together and those that don’t, and teaching them, through loss
functions, to make the first pair close and the second pair distant in
vector space.

1) Word-level embeddings (e.g., Word2Vec Skip-gram):
• Input: a target word
• Predict: its neighboring words (context)
• The network adjusts word vectors so that words appearing in similar contexts

(e.g., “doctor”, “nurse”) have similar embeddings

2) Sentence-level embeddings (e.g.,
Sentence-BERT, OpenAI Embeddings)
• Use a contrastive loss

• Given pairs (anchor, positive, negative):
anchor = "What is photosynthesis?"
positive = "The process by which plants make food using sunlight."
negative = "The capital of France is Paris."

• The model encodes all three and minimizes:
• distance(anchor, positive) << distance(anchor, negative)

Using the map

The geometry of this space encodes meaning relationships. You can use
it to, for example:
• Find similar meanings (“synonyms” → nearest neighbors)
• Retrieve relevant documents (e.g., RAG systems)
• Solve analogies:
• vector("king") - vector("man") + vector("woman") ≈ vector("queen")

Finding relevant information, revisited

We have a large collection of documents (e.g., PubMed papers, internal
documents, medical records). How do we identify what parts of this corpus
help answer that query?

1) Partition corpus into smaller chunks, and compute embedding for each

2) Compute an embedding for the query, and then:
• Find chunks that are “near” the query in embedding space
• Rank and return top-k
• Select from top-k to provide to LLM

Retrieval agent

A retrieval agent that decides whether
to retrieve context from a vectorstore or
respond to the user directly.
• Fetch and preprocess documents that

will be used for retrieval
• Index those documents for semantic

search and create a retriever tool for
the agent

• Build an agentic RAG system that can
decide when to use the retriever tool

Agentic RAG with LangGraph

https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag/

https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag/
https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag/
https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag/

Index chunks into a vector
store to use for semantic
search.

Generate query

Ask a question that requires semantic search

RAG summarized

• Why RAG? Ground LLM reasoning in external knowledge to improve
factuality, recency, provenance
• How it works: Embed → Retrieve → (Re-rank) → Generate → Cite
• Encode documents → store in vector DB (ANN index)
• Encode query → search top-k nearest vectors via ANN
• Return candidates → re-rank or feed to generator

• Key levers: Chunking, embedding choice, index type (HNSW/IVF-PQ),
filters, hybrid retrieval, re-ranking (cross-encoders), answer grounding
• Measure what matters: retrieval quality (Recall@k, nDCG), answer

groundedness & citation quality (RAG-specific evals)

RAG: Core ideas and lineage

• RAG combines parametric LM with non-parametric document index
• Canonical formulation: retrieve passages (dense retriever); condition generation

on them;

• Prior to 2020, open-domain QA was dominated by lexical retrieval
methods based on lexical overlap
• Failed when vocabulary differs: E.g., ”Where did Einstein study?” vs. “Einstein

attended the Polytechnic Institute in Zurich

• In 2020, Dense Passage Retriever (DPR) introduced vector encoding to
retrieve semantically similar text even without shared words
• Common to train two encoders, one for question and one for passage
• Pre-encode passages

Vector search at scale: ANN indexes & libraries

• When we perform retrieval in RAG systems, we often have millions or
billions of document embeddings stored as high-dimensional vectors
• Naively comparing a query vector to every stored vector is O(N): far too slow

for real-time applications

• Thus we use Approximate Nearest Neighbor (ANN) indexing
• Data structures that find “good enough” nearest vectors orders of magnitude

faster than exhaustive search

HNSW (Hierarchical Navigable Small World Graph)

• Build a multi-layer graph where each node is a
vector, and edges connect it to its neighbors

• Higher layers form a small-world network:
sparse connections that allow long “jumps”
across space

• At query time:
• Start from an entry point in the top layer
• Greedily descend layer by layer, following

edges toward vectors closer to the query
• The process efficiently zeroes in on a local

neighborhood of similar vectors

https://arxiv.org/abs/1603.09320 *

https://arxiv.org/abs/1603.09320

FAISS: Facebook AI Similarity Search

Type Description When to use
Flat (brute-force) Exact search; O(N) Small datasets (≤100k vectors)
IVF (Inverted File
Index)

Clusters vectors into “centroids”;
search only nearby clusters Millions of vectors

IVF-PQ (Product
Quantization)

Compress vectors for memory
efficiency Billion-scale datasets

HNSW Graph-based ANN for high recall Mid-sized (up to 100M) datasets

• An open-source C++/Python library for large-scale vector search
• Supports multiple ANN algorithms (including IVF, HNSW, Product Quantization)
• Runs on CPU or GPU, enabling extremely fast batched searches
• Provides exact search for small datasets and compressed approximate search

for billion-scale corpora.

Refining RAG

• (We have seen) Semantic matching
• Use dense embeddings to find text semantically close to the query, not just

keyword overlaps. E.g., text-embedding-3-large, bge-large-en, E5-mistral
• Metadata filtering
• Tag chunks with source, date, or domain attributes; filter by those (e.g., WHERE

doc_type="paper")
• Hybrid retrieval: combine semantic and lexical
• (And) Context-aware retrieval
• For multi-hop or compound questions, run query expansion or decomposition
• E.g., “Explain the impact of solar flares on aviation” → subqueries: “What are solar

flares?” + “How do they affect aviation systems?”

Hybrid retrieval
• Combining BM25 + dense retrieval often yields higher recall and

better robustness across domains
• BM25: excels at exact lexical overlap: Robust when query terms match

document vocabulary
• Dense retrievers: capture semantic similarity: Strong when paraphrases or

synonyms appear
• Run both retrievers independently, obtain ranked lists of candidate

documents, and merge them into a single unified ranking
• Use Reciprocal Rank Fusion (RRF) to combine the two scores (rewards

consensus)

S = set of retrieval systems (e.g., {BM25, DenseRetriever})
rank! 𝑑 = rank position of document d in system s’s result list (1 = top)
𝑘 = smoothing constant (commonly 60)

https://arxiv.org/pdf/2312.10997

https://arxiv.org/pdf/2312.10997

https://arxiv.org/pdf/2312.10997

RAG research first
focused on leveraging
the powerful in- context
learning abilities of
LLMs in the inference
stage. Subsequent
research delved deeper,
gradually integrating
more with the fine-
tuning of LLMs.
Researchers have also
explored enhancing
language models in the
pre-training stage
through retrieval-
augmented techniques.

https://arxiv.org/pdf/2312.10997

Fine tuning, in brief
Fine tuning refines a pre-trained model’s weights on domain-specific or task-
specific examples to improve accuracy, style, or reasoning
• Collect (prompt → ideal response) pairs
• Train with gradient descent on supervised or RL objectives to update model weights
• Validate and deploy new model checkpoint

Type Purpose
Supervised fine-tuning (SFT) Teach format, reasoning, tone
Instruction tuning Align with human prompts
Domain tuning Specialize to specific domains
LoRA / PEFT Lightweight, adapter-based updates

RAG and fine-tuning

Fine-tuning: Train it on examples like:
• Prompt: “Answer using only the context provided. Always cite sources.”

Input: Retrieved documents + question
Output: Grounded, cited response.
• Teaches how to use retrieved evidence, not what facts are true

RAG layer: Supplies up-to-date scientific papers, sensor logs, or lab
notebooks at inference time

The model has learned how to integrate evidence but depends on RAG to
fetch the right evidence

RAG and pre-training

• Most RAG systems add retrieval after pre-training (during inference or fine-
tuning).

• Recent research explores injecting retrieval into the pre-training stage
itself, so the model learns to read and reason with external memory from
the start

• During pre-training, instead of predicting the next token from a static
context, the model is periodically allowed to:
• Issue a retrieval query based on its current hidden state.
• Pull in relevant text passages from a large external corpus (Wikipedia, web

documents, scientific papers).
• Incorporate retrieved evidence before continuing token prediction.
• This makes retrieval part of the model’s learning loop, not just a bolt-on module.

https://arxiv.org/pdf/2312.10997

https://arxiv.org/pdf/2312.10997

Retrieval augmentation processes. Iterative retrieval involves alternating between retrieval and generation,
allowing for richer and more targeted context from the knowledge base at each step. Recursive retrieval involves
gradually refining the user query and breaking down the problem into sub-problems, then continuously solving
complex problems through retrieval and generation. Adaptive retrieval focuses on enabling the RAG system to
autonomously determine whether external knowledge retrieval is necessary and when to stop retrieval and
generation, often utilizing LLM-generated special tokens for control. https://arxiv.org/pdf/2312.10997

https://arxiv.org/pdf/2312.10997

https://arxiv.org/pdf/2312.10997

https://arxiv.org/pdf/2312.10997

Re-ranking

Cheap, approximate Expensive, accurate

After a retriever returns the top-k candidate documents for a query, we may want
to sort them by how relevant they truly are

Re-ranking approaches: CrossEncoder
• Bi-Encoders produce for a given

sentence a sentence embedding.
We pass to a BERT independently
the sentences A and B, which result
in the sentence embeddings u and v.
These sentence embedding can then
be compared using cosine similarity

• For a Cross-Encoder, we pass both
sentences simultaneously to the
Transformer network. It produces
then an output value between 0 and
1 indicating the similarity of the
input sentence pair.

https://sbert.net/examples/cross_encoder/applications/README.html

https://sbert.net/examples/cross_encoder/applications/README.html

query = "Who discovered penicillin?"

top_candidates = [
 "Alexander Fleming observed mold inhibiting bacterial growth in 1928 and named the
substance penicillin.",
 "Marie Curie discovered radioactivity and won two Nobel Prizes for her pioneering
work in physics and chemistry.",
 "Howard Florey and Ernst Chain later purified penicillin and developed it into a drug
used to treat infections.",
 "Penicillin is an antibiotic that works by weakening bacterial cell walls, leading to cell
rupture.",
 "In 1928, a Scottish scientist noticed that Staphylococcus colonies failed to grow near a
certain mold contaminant."
]

7.497 | Howard Florey and Ernst Chain later purified penicillin and developed it into a ...
7.367 | Alexander Fleming observed mold inhibiting bacterial growth in 1928 and named th...
-0.186 | Penicillin is an antibiotic that works by weakening bacterial cell walls, leadin...
-6.691 | Marie Curie discovered radioactivity and won two Nobel Prizes for her pioneering...
-9.254 | In 1928, a Scottish scientist noticed that Staphylococcus colonies failed to gro...

Evaluation: How well did we do?
(1) Retrieval

How often and how soon is “correct” doc identified?

• Recall@k: Fraction of time in top k results

• Mean Reciprocal Rank (MRR): Fraction of time is #1

• Normalized Discounted Cumulative Gain (nDCG): relevance and
rank position across multiple relevant results,
where relᵢ is graded relevance of item i
and IDCG is ideal DCG score

All computed over multiple datasets: e.g., Benchmark for Information
Retrieval (BEIR)

After retrieval and re-ranking, the generation step decides whether the proposed
answer is faithful, grounded, and properly attributed to evidence
A) Faithfulness / Groundedness
• Definition: How well does the generated answer stick to facts found in the

retrieved documents?
• Goal: Prevent hallucination, i.e., the model inventing unsupported claims
• Checks:

• Does every factual statement appear (or logically follow) from retrieved passages?
• Are external claims absent unless supported by context?

• Metrics:
• Precision of grounded facts (fraction of statements supported by retrieved docs).
• Factual consistency via automatic entailment models or LLM-based judges.

• Example: If context says, “Alexander Fleming discovered penicillin in 1928”
and the model answers, “Fleming discovered penicillin in 1929” → unfaithful

Evaluation: How well did we do?
(2) Generation

B) Answer-context overlap
• Definition: Measures how much of the generated answer’s content

directly overlaps or semantically aligns with retrieved evidence.
• Purpose: Quantifies how much the model actually uses the retrieved

material rather than free-associating.
• Methods:
• Compute token overlap, semantic similarity, or sentence-level

entailment between generated answer and concatenated context
• Higher overlap ≈ better grounding, but too high may mean copy-

paste rather than synthesis

Evaluation: How well did we do?
(2) Generation

C) Citation Attribution
• Definition: Evaluates whether the model’s citations (e.g., numbered or

inline references) correctly point to passages that support the claim
• Why it matters: Critical for scientific, medical, or legal RAG—users must

trace every fact to its source
• Checks:
• Each citation corresponds to a retrieved document
• The cited text actually supports the associated statement
• No “phantom” citations (referencing non-existent or irrelevant docs)

Evaluation: How well did we do?
(2) Generation

Toolkits for Generation Evaluation
RAGAS – Retrieval Augmented Generation Assessment Suite
• Developed by Hugging Face & Intel Labs.
• Automated scoring of RAG outputs across:
• Faithfulness (are answers grounded?)
• Answer relevance
• Context recall (did the retriever fetch needed info?)
• Context precision (was retrieved info actually used?)

• Uses a smaller LLM or NLI (natural-language inference) model for evaluation.
• Produces interpretable scores per query.
• Integrates easily into LangChain, LlamaIndex, or Hugging Face pipelines:

Toolkits for Generation Evaluation

TruLens – Evaluation & Monitoring Framework for LLM Apps
• Evaluates RAG systems along three axes:
• Relevance – retrieved documents match the query.
• Groundedness – generated output is supported by evidence.
• Correctness – final answer addresses the question accurately.

• Plugs into LangChain and LlamaIndex pipelines.
• Logs each query–context–generation triplet.
• Provides interactive dashboards to visualize scores and detect

hallucinations

Example evaluation loop*

* I have not tried this

Retrieval and generation metrics assess intermediate quality. End-to-
end (E2E) evaluation measures final task success: i.e., does the system
deliver correct, useful, efficient answers for real users?
• Overall effectiveness: Accuracy, F1, precision/recall
• User-perceived quality: faithfulness, helpfulness, fluency
• Operational metrics: latency, cost, reliability

Evaluation: How well did we do?
(3) End-to-end

Task Type Metric Description
QA / factoid Accuracy % answers exactly match gold standard
Multi-fact reasoning F1, EM (Exact Match) Combine precision & recall on answer tokens
Summarization / synthesis ROUGE, BLEU, BERTScore Compare to human summaries
Information extraction Precision / Recall / F1 Correct entities or relations extracted
Scientific / analytical RAG Task-specific metric e.g., % hypotheses supported, % correct citations

How to Present Retrieved Context
Dimension Choices / Variants Why it matters

Number of passages (k) small (e.g. 3–5) vs large (10–50) Too many distracts; too few
misses evidence.

Passage ordering by relevance, recency, diversity,
random

Position bias in the LLM’s
attention.

Pruning / compression full text vs selective sentences
vs attention-pruned snippets

Reduces noise and context
window usage (AttentionRAG).

Partitioning / batch
context

chunk into blocks, rotate,
interleave

Helps avoid “lost in the middle”
(BriefContext).

Highlighting / markup highlight query-aligned spans,
bold keywords

Draws LLM attention to
important parts.

Citation tags or labels prepend “Doc #1: …”, insert
inline “(see Doc 3)” markers

Encourages traceability and
provenance.

Hybrid context forms mix text with table, graph,
image contexts

Multi-modal retrieval +
presentation.

https://arxiv.org/pdf/2503.10720

https://arxiv.org/pdf/2503.10720

https://arxiv.org/pdf/2503.10720

https://arxiv.org/pdf/2503.10720

Zhang et al. (2025)
on “BriefContext” expl
ore how the order
and mix of retrieved
passages in context
influence
performance. They
show that distributing
“key information”
across shorter, well-
ordered context
batches outperforms
naive concatenation in
many biomedical QA
tasks

Beyond textual data
Data type Examples What the LLM must learn/do

Structured Databases, CSVs, SQL engines Generate and interpret queries,
aggregate results

Temporal / time-
series Sensors, logs, climate records Learn temporal reasoning; perform

trend analysis

Spatial / geospatial Maps, satellite imagery Call GIS APIs; reason with coordinates
and regions

Scientific / numeric Simulation codes, lab data, HPC
runs

Request parameters, launch
computations, interpret results

Multimodal Images, spectra, molecules,
graphs

Use embeddings or model adapters
per modality

Private / dynamic Company or lab databases,
instruments

Handle authentication, provenance,
and freshness

SMURF: Scientific MUltimodal Retrieval in Federations
Song Young Oh et al.

Multimodal RAG

Multi-modal RAG vs. database adapters

Say we want an AI assistant to answer: “Show me examples of catalysts
that perform well at 200 °C for CO₂ conversion, and include any
microscopy images showing the catalyst surface.”

Approach 1: Multi-modal RAG
• The system encodes both text (papers, lab notes) and images (SEM/TEM micrographs) into

a shared embedding space (e.g., with CLIP or BLIP-2)

• At query time, the LLM embeds the question and retrieves semantically related text+image
pairs from a vector database; LLM reads and reasons over those retrieved items to generate a
natural-language answer, perhaps with thumbnails and captions

• Pros
• Semantic flexibility: Handles vague or descriptive queries (“roughly spherical nanoparticles”) even if keywords differ

• Cross-modal grounding: Can reason jointly about visuals and text (“the rough surface in the micrograph corresponds
to higher activity”)

• Unifies unstructured knowledge: Works when data live in PDFs, figures, reports, not in a structured schema

• Cons
• Imprecise for numeric or filtering queries: “Temperature > 200 °C” is hard to enforce via embeddings

• Heavy retrieval & model cost: Storing and comparing high-dimensional embeddings for many images is expensive

• Weak provenance: Citations and data lineage are harder to guarantee because similarity search is probabilistic

Approach 2: Database adapter (structured query)
• The LLM converts the natural-language query into a structured query (e.g., SQL or

GraphQL) against a curated experimental database
• The database returns precise numeric results: reaction conditions, yields, temperatures.

The LLM may then call another retrieval or visualization tool to fetch related images or
metadata for the selected entries.
• Pros

• High precision, deterministic filtering and aggregation (“temperature > 200 °C AND efficiency > 85%”)
• Strong provenance and reproducibility: Every number ties back to a row in a controlled dataset
• Lower latency / smaller footprint for large numeric datasets

• Cons
• Rigid schema: Cannot easily handle free-form reports or unlabeled images.
• Limited semantic generalization: Fails if user asks in novel phrasing or wants reasoning across multiple

modalities
• Requires data engineering: Tables, schema, and API integration must exist

In practice, may want to combine both

• Use database adapters for quantitative filtering and verified facts.
• Use multi-modal RAG to bring in contextual evidence (plots, figures,

methods) and generate an integrated explanation
• For example:
• Query DB for catalysts > 200 °C → retrieve 5 records
• RAG retrieves micrographs + paper excerpts
• LLM synthesizes report with citations and visuals

System / Year Retrieval Innovation Generation / Integration Strategy
RAG
(Lewis et al., 2020)

Dense Passage Retriever (DPR) encodes
queries & documents into vector space for
semantic similarity

One-shot retrieval → LLM conditions
generation directly on top-k passages

FiD – Fusion-in-
Decoder (Izacard &
Grave 2021)

Retrieve many passages independently
(often > 50)

Decoder jointly attends to all retrieved
passages, fusing their evidence during
generation

HyDE – Hypothetical
Document Expansion
(Gao et al. 2023)

Generate a synthetic “ideal answer” →
embed → retrieve nearest real docs

Generator guided by retrieved real docs but
seeded by synthetic passage

Self-RAG
(Asai et al. 2023)

Model autonomously decides when /
whether / what to retrieve using special
control tokens

Alternates between retrieval ↔ generation
within one reasoning loop (self-critique and
revision)

GraphRAG
(Edge et al. 2024)

Retrieves graph nodes & edges instead of
text chunks (knowledge-graph retrieval).

Generator reasons over structured entities and
relations to compose graph-grounded answers.

LongRAG
(Jiang et al. 2024)

Retrieves larger, semantically grouped or
hierarchical chunks optimized for long-
context models

Uses long-context generation (4k–32k tokens)
to synthesize broader evidence windows

RAG landscape: Variants and evolution

RAG pitfalls
• Context window overflow / truncation

• When too many retrieved tokens exceed the LLM’s context limit, older or less-recent
chunks get silently dropped, causing loss of critical information or incoherent answers

• Irrelevant retrieval hurting generation
• Poorly matched passages can mislead the model’s reasoning, pulling the answer toward

unrelated topics or introducing factual noise

• Citation hallucination
• The model fabricates references or associates statements with the wrong source, creating

false confidence and undermining provenance

• Embedding drift when corpora evolve
• Updating or re-embedding documents with a new model or altered data distribution

changes their vector geometry, breaking previous similarity relationships and degrading
retrieval accuracy

