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Curriculum

1) Why Al agents for science?

Al agents and the sense-plan-act-learn loop. Scientific Discovery Platforms (SDPs): Al-
native systems that connect reasoning models with scientific resources.

2) Frontiers of Language Models

Surveys frontier reasoning models: general-purpose LLMs (GPT, Claude), domain-
specific foundation models (materials, bio, weather), and hybrids. Covers techniques
for eliciting better reasoning: prompting, chain-of-thought, retrieval-augmented
generation (RAG), fine-tuning, and tool-augmented reasoning.

3) Systems for Agents

Discusses architectures and frameworks for building multi-agent systems, with
emphasis on inter-agent communication, orchestration, and lifecycle management.

4) Retrieval Augmented Generation (RAG) and Vector Databases

Covers how to augment reasoning models with external knowledge bases, vector
search, and hybrid retrieval methods.



Readings
* Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

* The FAISS library
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Recall example: A peptide expert
(Prototyped with PubMed and ChatGPT)

Retrieve abstracts A from PubMed that

Publmed ChatGPT reference specified peptide
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Arvind Ramanathan, Priyanka Setty, et al.



The basic idea behind RAG

Q: “Which known drugs might modulate the FXN gene pathway?”

SYSTEM: Use only the following context to propose candidate drugs.
CONTEXT:

[Document 1...]
[Document 2...]

QUESTION: Which known drugs might modulate the FXN gene pathway?

The LLM provides a more accurate answer because it has access to accurate and
pertinent information
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Questions

Q: “Which known drugs might modulate the FXN gene pathway?”

We have many documents (e.g., PubMed papers, internal documents, medical
records). How can we use this corpus to help the model answer our query?

* What information is relevant?

* How do | find that information?

* How much information should | provide?

 What is the best way to present that information?
 How do | evaluate performance?

 How do | handle information of different types?



“Which known drugs might modulate the FXN gene
pathway?” -- Which documents are relevant?

* We can search on metadata or on text matches: e.g., articles for
which the title or the body text includes the word “FXN”

* But we want to find papers that discuss “related topics”: e.g., drugs
that modulate related gene pathways, or that describe “modulation
of the FXN gene pathway” but using different words

* Computers don’t understand meaning: they store text as strings
* They can check equality (“cat” vs. “dog”), but not that both are animals

* We want a way to represent words and sentences so that similar
meanings are close together



BM25 (“Best Matching 25”)

* A widely used lexical retrieval algorithm that scores documents based
on the frequency of query terms in each document, adjusted for term
importance (IDF) and document length:

~ fi&,d)- (ks +1)
score(q, d) = ;/DF@) ft,d)+ky-(1—=b+b-d|/avgd)

* Where:
* f(t,d): frequency of term t in document d Boosts relevance
* | d |: document length Prevents long docs dominating
* avgdl: average document length in corpus
* k,: term-frequency scaling factor (= 1.2-2.0)
* b: length normalization factor (= 0.75)

N—n¢+0.5
ng+0.5

* IDF(t): inverse document frequency = log Downweights common words



Distributional Hypothesis

* Words that occur in the same contexts tend to have similar meanings
(Harris, 1954%*)

* One of the most successful ideas in modern NLP
* Greatly boosts performance if used correctly
* |dea: Count the co-occurrence of tokens, e.g., within sentences

word1 | word2 word3 word4 word5 | word6 | word7
word1 0 2 0 3 5 0 1
word2 0 1 5 2 0 3
word3 0 1 0 0 1
word4 0 6 0 1

Iryna Gurevych, 2017 * https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520
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Distributional Hypothesis

* E.g., we might find upon scanning a large corpus that:
* Bill Gates often appears next to “Microsoft,” “philanthropy,” “billionaire.”
* Warren Buffett co-occurs with “investor,” “billionaire,” “fortune”
* Ethiopia and Sierra Leone co-occur with “developing,” “poverty,” “Africa”

* The frequency and context of those pairings can be used to infer
relationships: who or what tends to be associated with wealth or poverty,
people or countries, etc.

A

rich

Warren Buffet

Bill Gates

Ethiopia

Sierra Leone

>

poor
Iryna Gurevych, 2017 * https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520
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Learning the geometry of language

* Nowadays we don’t count co-occurences. Instead, we train an
embedding model (a small neural network) to place words or
sentences in this space

* During training, the model learns that:
» Words appearing in similar contexts (“doctor” and “nurse”) should be close
* Words with different contexts (“doctor” and “banana”) should be far apart

* The result: a map where distance = semantic difference



Training embedding models (in brief!)

Embedding models are trained by showing them examples of texts that
belong together and those that don’t, and teaching them, through loss
functions, to make the first pair close and the second pair distant in

vector space.

1) Word-level embeddings (e.g., Word2Vec Skip-gram):

* Input: a target word

* Predict: its neighboring words (context)

* The network adjusts word vectors so that words appearing in similar contexts
(e.g., “doctor”, “nurse”) have similar embeddings

Vi



2) Sentence-level embeddings (e.g.,
Sentence-BERT, OpenAl Embeddings)

e Use a contrastive loss

L = max(@, d(anchor, positive) - d(anchor, negative) + margin)

* Given pairs (anchor, positive, negative):
anchor = "What is photosynthesis?"
positive = "The process by which plants make food using sunlight."
negative = "The capital of France is Paris."

* The model encodes all three and minimizes:
* distance(anchor, positive) << distance(anchor, negative)



Using the map

The geometry of this space encodes meaning relationships. You can use
it to, for example:

* Find similar meanings (“synonyms” = nearest neighbors)
* Retrieve relevant documents (e.g., RAG systems)
* Solve analogies:

 vector("king") - vector("man") + vector("woman") = vector("queen")



Finding relevant information, revisited

We have a large collection of documents (e.g., PubMed papers, internal

documents, medical records). How do we identify what parts of this corpus
help answer that query?

1) Partition corpus into smaller chunks, and compute embedding for each

2) Compute an embedding for the query, and then:

* Find chunks that are “near” the query in embedding space
e Rank and return top-k

 Select from top-k to provide to LLM
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Retrieval agent

A retrieval agent that decides whether
to retrieve context from a vectorstore or
respond to the user directly.

* Fetch and preprocess documents that
will be used for retrieval

* Index those documents for semantic
search and create a retriever tool for
the agent

* Build an agentic RAG system that can
decide when to use the retriever tool

( __start__ )

‘ generate_query_or_respond |

tobls

retrieve

v

‘ generate_answer

'\

\"A

( rewrite_question




Agentic RAG with LangGraph

Fetch documents to use in our RAG system. We will use three of the most recent pages
from Lilian Weng's excellent blog. We'll start by fetching the content of the pages using
WebBaselLoader utility:

from langchain_community.document_loaders import WebBaselLoader 0O

urls = |
"https://lilianweng.github.io/posts/2024-11-28-reward-hacking/",
"https://1lilianweng.github.io/posts/2024-07-07-hallucination/",
"https://lilianweng.github.io/posts/2624-064-12-diffusion-video/",

]

docs = [WebBaselLoader(url).load() for url in urls]

docs[0][0] .page_content.strip()[:1000]

https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph agentic rag/
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Split the fetched documents into smaller chunks for indexing into our vectorstore:

from langchain_text_splitters import RecursiveCharacterTextSplitter
docs_list = [item for sublist in docs for item in sublist]

text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=100, chunk_overlap=50

)

doc_splits = text_splitter.split_documents(docs_list)

doc_splits[0].page_content.strip()



Index chunks into a vector
store to use for semantic
search.

1. Use anin-memory vector store and OpenAl embeddings:

from langchain_core.vectorstores import InMemoryVectorStore
from langchain_openai import OpenAIEmbeddings

vectorstore = InMemoryVectorStore.from_documents(
documents=doc_splits, embedding=0OpenAIEmbeddings()
)

retriever = vectorstore.as_retriever()

2. Create aretriever tool using LangChain's prebuilt create_retriever_tool:

from langchain.tools.retriever import create_retriever_tool

retriever_tool = create_retriever_tool(
retriever,
"retrieve_blog_posts",
"Search and return information about Lilian Weng blog posts.",

3. Test the tool:

retriever_tool.invoke({"query": "types of reward hacking"})



Generate query

Now we will start building components (nodes and edges) for our agentic RAG graph.

Note that the components will operate on the MessagesState — graph state that contains a
messages key with a list of chat messages.

1. Build a generate_query_or_respond node. It will call an LLM to generate a response
based on the current graph state (list of messages). Given the input messages, it will
decide to retrieve using the retriever tool, or respond directly to the user. Note that we're
giving the chat model access to the retriever_tool we created earlier via .bind_tools:

from langgraph.graph import MessagesState
from langchain.chat_models import init_chat_model

response_model = init_chat_model("openai:gpt-4.1", temperature=0)

def generate_query_or_respond(state: MessagesState):
"""Call the model to generate a response based on the current state. Given
the question, it will decide to retrieve using the retriever tool, or simpl

response = (
response_model
| .bind_tools([retriever_tool]).invoke(state[ "messages"])

)

return {"messages": [response]}



Ask a question that requires semantic search

input = {
"messages": |
{
"role": "user",
"content”: "What does Lilian Weng say about types of reward hacking?
}
]
b

generate_query_or_respond(input)["messages"][-1].pretty_print()



from langgraph.graph import StateGraph, START, END
from langgraph.prebuilt import ToolNode

from langgraph.prebuilt import tools_condition
_ start__

workflow = StateGraph(MessagesState)

# Define the nodes we will cycle between
workflow.add_node(generate_query_or_respond)
workflow.add_node("retrieve", ToolNode([retriever_tool]))

(
workflow.add_node(rewrite_question) enerate que or respond
( g _query_or_resp

workflow.add_node(generate_answer)

workflow.add_edge(START, "generate_query_or_respond") ﬂ,x”“ ; ‘k\\\\\\\\\\\\\\\\\
tools

# Decide whether to retrieve
workflow.add_conditional_edges(
"generate_query_or_respond",
# Assess LLM decision (call ‘retriever_tool" tool or respond to the user)

tools_condition, retrieve
{ H

# Translate the condition outputs to nodes in our graph

"tools": "retrieve",

END: END, : :
b, ; v

)
generate_answer rewrite_question

# Edges taken after the “action’ node is called.

workflow.add_conditional_edges(
"retrieve",
# Assess agent decision
grade_documents,
)
workflow.add_edge("generate_answer", END)
workflow.add_edge("rewrite_question", "generate_query_or_respond")

# Compile
graph = workflow.compile()



REWRITE_PROMPT = (
"Look at the input and try to reason about the underlying semantic intent / meaning.\n"
"Here is the initial question:"

ll\n _______ \nll
"{question}"
ll\n _______ \nll

"Formulate an improved question:"

def rewrite_question(state: MessagesState):

Rewrite the original user question."""

messages = state["messages"|]

question = messages[0].content

prompt = REWRITE_PROMPT.format(question=question)

response = response_model.invoke([{"role": "user", "content": prompt}])
return {"messages": [{"role": "user", "content": response.content}]}

mon



RAG summarized

* Why RAG? Ground LLM reasoning in external knowledge to improve
factuality, recency, provenance

* How it works: Embed — Retrieve - (Re-rank) - Generate - Cite

* Encode documents - store in vector DB (ANN index)
* Encode query — search top-k nearest vectors via ANN
* Return candidates - re-rank or feed to generator

* Key levers: Chunking, embedding choice, index type (HNSW/IVF-PQ),
filters, hybrid retrieval, re-ranking (cross-encoders), answer grounding

* Measure what matters: retrieval quality (Recall@k, nDCG), answer
groundedness & citation quality (RAG-specific evals)



RAG: Core ideas and lineage

* RAG combines parametric LM with non-parametric document index
» Canonical formulation: retrieve passages (dense retriever); condition generation
on them;
* Prior to 2020, open-domain QA was dominated by lexical retrieval

methods based on lexical overlap

* Failed when vocabulary differs: E.g., "Where did Einstein study?” vs. “Einstein
attended the Polytechnic Institute in Zurich

* In 2020, Dense Passage Retriever (DPR) introduced vector encoding to
retrieve semantically similar text even without shared words
 Common to train two encoders, one for question and one for passage
* Pre-encode passages



Vector search at scale: ANN indexes & libraries

* When we perform retrieval in RAG systems, we often have millions or
billions of document embeddings stored as high-dimensional vectors

* Naively comparing a query vector to every stored vector is O(N): far too slow
for real-time applications

* Thus we use Approximate Nearest Neighbor (ANN) indexing

* Data structures that find “good enough” nearest vectors orders of magnitude
faster than exhaustive search



HNSW (Hierarchical Navigable Small World Graph)

* Build a multi-layer graph where each node is a
vector, and edges connect it to its neighbors

* Higher layers form a small-world network:
sparse connections that allow long “jumps”
across space

* At query time:

 Start from an entry point in the top layer

* Greedily descend layer by layer, following
edges toward vectors closer to the query

* The process efficiently zeroes in on a local
neighborhood of similar vectors

* https://arxiv.org/abs/1603.09320

Layer=2

Decreasing characteristic radius

<<
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FAISS: Facebook Al Similarity Search

* An open-source C++/Python library for large-scale vector search
» Supports multiple ANN algorithms (including IVF, HNSW, Product Quantization)
* Runs on CPU or GPU, enabling extremely fast batched searches

* Provides exact search for small datasets and compressed approximate search
for billion-scale corpora.

Type Description When to use
Flat (brute-force) |Exact search; O(N) Small datasets (<100k vectors)
IVF (Inverted File | Clusters vectors into “centroids”;

Millions of vectors
Index) search only nearby clusters

IVF-PQ (Product Compress vectors for memory

N . Billion-scale datasets
Quantization) efficiency

HNSW Graph-based ANN for high recall Mid-sized (up to 100M) datasets




Refining RAG

* (We have seen) Semantic matching

* Use dense embeddings to find text semantically close to the query, not just
keyword overlaps. E.g., text-embedding-3-large, bge-large-en, E5-mistral

* Metadata filtering

* Tag chunks with source, date, or domain attributes; filter by those (e.g., WHERE
doc_type="paper")

 Hybrid retrieval: combine semantic and lexical
* (And) Context-aware retrieval

e For multi-hop or compound questions, run query expansion or decomposition

* E.g., “Explain the impact of solar flares on aviation” = subqueries: “What are solar
flares?” + “How do they affect aviation systems?”



Hybrid retrieval

* Combining BM25 + dense retrieval often yields higher recall and
better robustness across domains

* BM25: excels at exact lexical overlap: Robust when query terms match
document vocabulary

* Dense retrievers: capture semantic similarity: Strong when paraphrases or
synonyms appear

* Run both retrievers independently, obtain ranked lists of candidate

documents, and merge them into a single unified ranking

» Use Reciprocal Rank Fusion (RRF) to combine the two scores (rewards
consensus)

Z 1 S = set of retrieval systems (e.g., {BM25, DenseRetriever})
2 . (d rank,(d) = rank position of document d in system s’s result list (1 = top)
score(d) — se§ K+ ran s( ) k = smoothing constant (commonly 60)
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Fine tuning, in brief

Fine tuning refines a pre-trained model’s weights on domain-specific or task-
specific examples to improve accuracy, style, or reasoning
* Collect (prompt = ideal response) pairs
* Train with gradient descent on supervised or RL objectives to update model weights
* Validate and deploy new model checkpoint

Type Purpose

Supervised fine-tuning (SFT) Teach format, reasoning, tone
Instruction tuning Align with human prompts

Domain tuning Specialize to specific domains
LoRA / PEFT Lightweight, adapter-based updates




RAG and fine-tuning

Fine-tuning: Train it on examples like:

* Prompt: “Answer using only the context provided. Always cite sources.”

Input: Retrieved documents + question
Output: Grounded, cited response.

* Teaches how to use retrieved evidence, not what facts are true

RAG layer: Supplies up-to-date scientific papers, sensor logs, or lab
notebooks at inference time

The model has learned how to integrate evidence but depends on RAG to
fetch the right evidence



RAG and pre-training

* Most RAG systems add retrieval after pre-training (during inference or fine-
tuning).

* Recent research explores injecting retrieval into the pre-training stage
itself, so the model learns to read and reason with external memory from
the start

* During pre-training, instead of predicting the next token from a static
context, the model is periodically allowed to:
* Issue a retrieval query based on its current hidden state.
* Pull in relevant text passages from a large external corpus (Wikipedia, web
documents, scientific papers).
* Incorporate retrieved evidence before continuing token prediction.
* This makes retrieval part of the model’s learning loop, not just a bolt-on module.
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ITERATIVE RECURSIVE ADAPTIVE

Provide more context information Break down complex problems step by step Flexible and active control of retrieval and generation

C .
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Retrieval augmentation processes. Iterative retrieval involves alternating between retrieval and generation,
allowing for richer and more targeted context from the knowledge base at each step. Recursive retrieval involves
gradually refining the user query and breaking down the problem into sub-problems, then continuously solving
complex problems through retrieval and generation. Adaptive retrieval focuses on enabling the RAG system to
autonomously determine whether external knowledge retrieval is necessary and when to stop retrieval and
generation, often utilizing LLM-generated special tokens for control. https://arxiv.org/pdf/2312.10997
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Re-ranking

After a retriever returns the top-k candidate documents for a query, we may want
to sort them by how relevant they truly are

All documents

Que,rt/:
\/\N\,- /l,.]\_ J\/\-VJ\. P fop_k = 25— | Vector
. DB

Topn =3

.

These are most

relevant records Reranker C-CIC00 )

r-=---
T
|
|
|
]
|
|

-—- HRTE \

Cheap, approximate Expensive, accurate



Re-ranking approaches: CrossEncoder

* Bi-Encoders produce for a given
sentence a sentence embedding.

We pass to a BERT mdeper.\dently . Bi-Encoder Cross-Encoder
the sentences A and B, which result N
in the sentence embeddings u and v. Cosine-Similarity
These sentence embedding can then T e
be compared using cosine similarity u v 0.1
4 4 £
* For a Cross-Encoder, we pass both pooling pooling Classifier

sentences simultaneously to the : : -

y BERT BERT BERT
Transformer network. It produces § §

Sentence A SentenceB Sentence A SentenceB

then an output value between 0 and
1 indicating the similarity of the
input sentence pair.

https://sbert.net/examples/cross encoder/applications/README.htm]



https://sbert.net/examples/cross_encoder/applications/README.html

guery = "Who discovered penicillin?"

top_candidates = |

"Alexander Fleming observed mold inhibiting bacterial growth in 1928 and named the
substance penicillin.",

"Marie Curie discovered radioactivity and won two Nobel Prizes for her pioneering
work in physics and chemistry.",

"Howard Florey and Ernst Chain later purified penicillin and developed it into a drug
used to treat infections.",

"Penicillin is an antibiotic that works by weakening bacterial cell walls, leading to cell
rupture.”,

"In 1928, a Scottish scientist noticed that Staphylococcus colonies failed to grow near a
certain mold contaminant."

]



from sentence_transformers import CrossEncoder
model = CrossEncoder("cross—-encoder/ms—-marco-MinilLM-L6-v2")

pairs = [(query, doc) for doc in top_candidates]

scores = model.predict(pairs)

ranked = sorted(zip(top_candidates, scores), key=lambda x: x[1],

for doc, score in ranked:
print(f®*{score:.3fr | Adoci:igeli...")

reverse=True)



7.497 | Howard Florey and Ernst Chain later purified penicillin and developed it into a ...
7.367 | Alexander Fleming observed mold inhibiting bacterial growth in 1928 and named th...
-0.186 | Penicillin is an antibiotic that works by weakening bacterial cell walls, leadin...

-6.691 | Marie Curie discovered radioactivity and won two Nobel Prizes for her pioneering...
-9.254 | In 1928, a Scottish scientist noticed that Staphylococcus colonies failed to gro...



Evaluation: How well did we do?
(1) Retrieval

How often and how soon is “correct” doc identified?
* Recall@k: Fraction of time in top k results

* Mean Reciprocal Rank (MRR): Fraction of time is #1

N
! Z
MRR = N i=1 ranki

* Normalized Discounted Cumulative Gain (nDCG): relevance and
rank position across multiple relevant results, 1 oreli __ 1

where re/'ls_graded relevance of item i WDCCAE — IDCGak it log2(i + 1)
and IDCG is ideal DCG score

All computed over multiple datasets: e.g., Benchmark for Information
Retrieval (BEIR)




Fvaluation: How well did we do?
(2) Generation

After retrieval and re-ranking, the generation step decides whether the proposed
answer is faithful, grounded, and properly attributed to evidence

A) Faithfulness / Groundedness

» Definition: How well does the generated answer stick to facts found in the
retrieved documents?

* Goal: Prevent hallucination, i.e., the model inventing unsupported claims
* Checks:

* Does every factual statement appear (or logically follow) from retrieved passages?
* Are external claims absent unless supported by context?
* Metrics:
* Precision of grounded facts (fraction of statements supported by retrieved docs).
* Factual consistency via automatic entailment models or LLM-based judges.

« Example: If context says, “Alexander Fleming discovered penicillin in 1928”
and the model answers, “Fleming discovered penicillin in 1929” - unfaithful



Fvaluation: How well did we do?
(2) Generation

B) Answer-context overlap
* Definition: Measures how much of the generated answer’s content
directly overlaps or semantically aligns with retrieved evidence.

* Purpose: Quantifies how much the model actually uses the retrieved
material rather than free-associating.

* Methods:

* Compute token overlap, semantic similarity, or sentence-level
entailment between generated answer and concatenated context

* Higher overlap = better grounding, but too high may mean copy-
paste rather than synthesis



Fvaluation: How well did we do?
(2) Generation

C) Citation Attribution
* Definition: Evaluates whether the model’s citations (e.g., numbered or
inline references) correctly point to passages that support the claim
* Why it matters: Critical for scientific, medical, or legal RAG—users must
trace every fact to its source
* Checks:
* Each citation corresponds to a retrieved document

* The cited text actually supports the associated statement
* No “phantom” citations (referencing non-existent or irrelevant docs)



Toolkits for Generation Evaluation

RAGAS - Retrieval Augmented Generation Assessment Suite

Developed by Hugging Face & Intel Labs.

Automated scoring of RAG outputs across:
* Faithfulness (are answers grounded?)
* Answer relevance
» Context recall (did the retriever fetch needed info?)
» Context precision (was retrieved info actually used?)

Uses a smaller LLM or NLI (natural-language inference) model for evaluation.

Produces interpretable scores per query.

Integrates easily into LangChain, Llamalndex, or Hugging Face pipelines:

from ragas import evaluate

scores = evaluate(answers, contexts, questions)



Toolkits for Generation Evaluation

TrulLens — Evaluation & Monitoring Framework for LLM Apps

 Evaluates RAG systems along three axes:
* Relevance —retrieved documents match the query.

* Groundedness — generated output is supported by evidence.
* Correctness — final answer addresses the question accurately.

* Plugs into LangChain and Llamalndex pipelines.
* Logs each query—context—generation triplet.

* Provides interactive dashboards to visualize scores and detect
hallucinations



Example evaluation loop™

for query in dataset:
retrieved_docs = retriever(query)
answer = llm.generate(query, context=retrieved_docs)
scores = {
"faithfulness": ragas.faithfulness(answer, retrieved_docs),
"overlap": ragas.overlap(answer, retrieved_docs),

"citations": trulens.check _citations(answer, retrieved _docs)
¥
log(scores)

* | have not tried this



Evaluation: How well did we do?
(3) End-to-end

Retrieval and generation metrics assess intermediate quality. End-to-
end (E2E) evaluation measures final task success: i.e., does the system
deliver correct, useful, efficient answers for real users?

 Overall effectiveness: Accuracy, F1, precision/recall
» User-perceived quality: faithfulness, helpfulness, fluency
* Operational metrics: latency, cost, reliability

Task Type Metric Description
QA / factoid Accuracy % answers exactly match gold standard
Multi-fact reasoning F1, EM (Exact Match) Combine precision & recall on answer tokens

Summarization / synthesis | ROUGE, BLEU, BERTScore | Compare to human summaries

Information extraction Precision / Recall / F1 Correct entities or relations extracted

Scientific / analytical RAG | Task-specific metric e.g., % hypotheses supported, % correct citations




How to Present Retrieved Context

Dimension

Choices / Variants

Why it matters

Number of passages (k)

small (e.g. 3-5) vs large (10-50)

Too many distracts; too few
misses evidence.

Passage ordering

by relevance, recency, diversity,
random

Position bias in the LLM'’s
attention.

Pruning / compression

full text vs selective sentences
vs attention-pruned snippets

Reduces noise and context
window usage (AttentionRAG).

Partitioning / batch
context

chunk into blocks, rotate,
interleave

Helps avoid “lost in the middle”
(BriefContext).

Highlighting / markup

highlight query-aligned spans,
bold keywords

Draws LLM attention to
important parts.

Citation tags or labels

prepend “Doc #1: ...", insert
inline “(see Doc 3)” markers

Encourages traceability and
provenance.

Hybrid context forms

mix text with table, graph,
image contexts

Multi-modal retrieval +
presentation.




Query

Who is the richest
person in the world
of 20247

—_—
Retrieve

Retrieved Context

|

Bernard Arnault (born 5
March 1949) is a French
businessman

Bernard Arnault overtook
Elon Musk as the richest
person in 2024 due to a
21% decline in Musk’' s
wealth, from  $245.3
billion to $194.6 billion.

5000+ tokens

(4

—_—
Compress

!

_| Compressed Context

Bernard Arnault overtook
Elon Musk as the richest
person in 2024 due to a
21% decline in Musk’' s

wealth ... <1000 tokens

Large Language Models @

https://arxiv.org/pdf/2503.10720

!

Answer

Bernard Arnault

l

Answer

Bernard Arnault



https://arxiv.org/pdf/2503.10720

Step 1: Construct Answer Prefix |

| Query |

. Retrieve

Long Context Chunks

Sibley, on account of his long familiarity with
Indian character, was placed in command of the

[ Where is Daniel?

ey B

[Daniel is in the <target> ]

[ U U U — | ———

-
!

https://arxiv.org/pdf/2503.10720

A4

troops ordered to assemble at St. Daniel

journeyed to the Kitchen . Daniel journeyed to
the office.

Concatenated Prompt

N

character , was placed in command of the troops ordered
to assemble at St . Daniel journeyed fo the kitchen

Daniel journeyed to the of'ﬁ’cel
Attention of

auestion: Where is Daniel? \)"- <target>

Sibley , on account of his long familiarity with Indian

Answer: Daniel is in theiofficei =~

Answer

[ Compressed Prompt |
[Daniel journeyed to fhe]

kitchen . Daniel journeyed
to the office. ...

Step 3: Attention-guided
Compression

[ U U U g


https://arxiv.org/pdf/2503.10720
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Beyond textual data

Data type

Examples

What the LLM must learn/do

Structured

Databases, CSVs, SQL engines

Generate and interpret queries,
aggregate results

Temporal / time-
series

Sensors, logs, climate records

Learn temporal reasoning; perform
trend analysis

Spatial / geospatial

Maps, satellite imagery

Call GIS APIs; reason with coordinates
and regions

Scientific / numeric

Simulation codes, lab data, HPC
runs

Request parameters, launch
computations, interpret results

Multimodal

Images, spectra, molecules,
graphs

Use embeddings or model adapters
per modality

Private / dynamic

Company or lab databases,
instruments

Handle authentication, provenance,
and freshness




User Query

{)
L

Query
Processor

Resource
Selection

/ Vector Databases \

ANN
Search

D
Jo

Modality: Text

ANN
Search

Modality: Image

ANN
Search

L)
Jo

LD
Jo

K Modality: SMILES /

Song Young Oh et al.

Query Interface

Result
Merging

Embedding
Aligner

SMUREF: Scientific MUItimodal Retrieval in Federations

Live Dashboard

Container: wilvus_sitel
Modality: Text
Status:

Container: Wilvus_Site2
Modality: tnage
Status:

Container: Wilvus_site3
Modality: surLes
Status:

Site 4

Container: Milvus_sites
Modality: Text
Status: @ Active

Site 5

Container: wilvus_sites
Modality: Tmage
Status: @ Active

Multimodal RAG

SMURF Query Interface

Text or SMILES Query

[HI[c@@N2CC[C@H](C(C)=0)[C@@]1(C)CCIC@@I1([H])
[c@@]2([H])ccca=cc(=0)cc[c@]12d

Run Federated Search Enable Resource Selection

Text Result

Score: 0.9963  Site4

Transdermal and therapy for p
depression and mood symptoms: retrospective cohort study.
Authors: Glynne S, Kamal A, McColl L, Newson L, Reisel D, Mu E, Hendriks O, Saini P,
Gurvich C, Kulkarni J | Date: 2025 Jun 16

BACKGROUND: P in peri and early
menopause are common. The impact of menopausal hormone therapy
(MHT) on menopausal mood symptoms is unclear. AIMS: To assess the
impact of 17beta-oestradiol +/- micronised progesterone or the
levonorgestrel-releasing intrauterine device, and/or transdermal
, on dep and anxiety in peri- and

postmenopausal women. METHOD: A real-world retrospective cohort
study set in the largest specialist menopause clinic in the UK. The Meno-D

i i mood-related RESULTS: The study
included 920 women: 448 (48.7%) perimenopausal, and 435 (47.3%)

Image Query

@ Drag and drop file here
Limit 200MB per file - PNG, JPG, JPEG

Image Result

Score: 0.9984  Site5

File: FFI_Progesterone.png

Description: This is a molecular image of Progesterone.

0.45-
0.40
o 0.35
D25
9,
O 0.20
% 0.15--
0.10-
0.05
0.00

Text-Image Text-SMILES

= Original
= Aligned

Image-Text Image-SMILES SMILES-Text SMILES-Image



Multi-modal RAG vs. database adapters

Say we want an Al assistant to answer: “Show me examples of catalysts
that perform well at 200 °C for CO, conversion, and include any
microscopy images showing the catalyst surface.”



Approach 1: Multi-modal RAG

* The system encodes both text (papers, lab notes) and images (SEM/TEM micrographs) into
a shared embedding space (e.g., with CLIP or BLIP-2)

* At query time, the LLM embeds the question and retrieves semantically related text+image
pairs from a vector database; LLM reads and reasons over those retrieved items to generate a
natural-language answer, perhaps with thumbnails and captions

* Pros

* Semantic flexibility: Handles vague or descriptive queries (“roughly spherical nanoparticles”) even if keywords differ

* Cross-modal grounding: Can reason jointly about visuals and text (“the rough surface in the micrograph corresponds
to higher activity”)

* Unifies unstructured knowledge: Works when data live in PDFs, figures, reports, not in a structured schema

* Cons

* Imprecise for numeric or filtering queries: “Temperature > 200 °C” is hard to enforce via embeddings
* Heavy retrieval & model cost: Storing and comparing high-dimensional embeddings for many images is expensive

* Weak provenance: Citations and data lineage are harder to guarantee because similarity search is probabilistic



Approach 2: Database adapter (structured query)

* The LLM converts the natural-language query into a structured query (e.g., SQL or
GraphQl) against a curated experimental database

* The database returns precise numeric results: reaction conditions, yields, temperatures.
The LLM may then call another retrieval or visualization tool to fetch related images or
metadata for the selected entries.

* Pros
* High precision, deterministic filtering and aggregation (“temperature > 200 °C AND efficiency > 85%")
* Strong provenance and reproducibility: Every number ties back to a row in a controlled dataset
* Lower latency / smaller footprint for large numeric datasets

* Cons
* Rigid schema: Cannot easily handle free-form reports or unlabeled images.

* Limited semantic generalization: Fails if user asks in novel phrasing or wants reasoning across multiple
modalities

* Requires data engineering: Tables, schema, and API integration must exist



In practice, may want to combine both

* Use database adapters for quantitative filtering and verified facts.

* Use multi-modal RAG to bring in contextual evidence (plots, figures,
methods) and generate an integrated explanation

* For example:
e Query DB for catalysts > 200 °C - retrieve 5 records
* RAG retrieves micrographs + paper excerpts
e LLM synthesizes report with citations and visuals



RAG landscape: Variants and evolution

System / Year

Retrieval Innovation

Generation / Integration Strategy

RAG
(Lewis et al., 2020)

Dense Passage Retriever (DPR) encodes
queries & documents into vector space for
semantic similarity

One-shot retrieval - LLM conditions
generation directly on top-k passages

FiD — Fusion-in-
Decoder (lzacard &
Grave 2021)

Retrieve many passages independently
(often > 50)

Decoder jointly attends to all retrieved
passages, fusing their evidence during
generation

HyDE — Hypothetical
Document Expansion
(Gao et al. 2023)

Generate a synthetic “ideal answer” -
embed - retrieve nearest real docs

Generator guided by retrieved real docs but
seeded by synthetic passage

Self-RAG
(Asai et al. 2023)

Model autonomously decides when /
whether / what to retrieve using special
control tokens

Alternates between retrieval <> generation
within one reasoning loop (self-critique and
revision)

GraphRAG Retrieves graph nodes & edges instead of |Generator reasons over structured entities and
(Edge et al. 2024) text chunks (knowledge-graph retrieval). |relations to compose graph-grounded answers.
LongRAG Retrieves larger, semantically grouped or |Uses long-context generation (4k—32k tokens)

(Jiang et al. 2024)

hierarchical chunks optimized for long-
context models

to synthesize broader evidence windows




RAG pitfalls

* Context window overflow / truncation

 When too many retrieved tokens exceed the LLM’s context limit, older or less-recent
chunks get silently dropped, causing loss of critical information or incoherent answers

* Irrelevant retrieval hurting generation

* Poorly matched passages can mislead the model’s reasoning, pulling the answer toward
unrelated topics or introducing factual noise

* Citation hallucination
 The model fabricates references or associates statements with the wrong source, creating
false confidence and undermining provenance

 Embedding drift when corpora evolve
* Updating or re-embedding documents with a new model or altered data distribution
changes their vector geometry, breaking previous similarity relationships and degrading
retrieval accuracy



