
AI Agents for Science

Instructor: Ian Foster
TA: Alok Kamatar

Crescat scientia; vita excolatur https://canvas.uchicago.edu/courses/67079
CMSC 35370 -- https://agents4science.github.io

Lecture 5, October 13: Tool Calling

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

Curriculum
1) Why AI agents for science?

AI agents and the sense-plan-act-learn loop. Scientific Discovery Platforms (SDPs): AI-
native systems that connect reasoning models with scientific resources.

2) Frontiers of Language Models
Surveys frontier reasoning models: general-purpose LLMs (GPT, Claude), domain-
specific foundation models (materials, bio, weather), and hybrids. Covers techniques
for eliciting better reasoning: prompting, chain-of-thought, retrieval-augmented
generation (RAG), fine-tuning, and tool-augmented reasoning.

3) Systems for Agents
Discusses architectures and frameworks for building multi-agent systems, with
emphasis on inter-agent communication, orchestration, and lifecycle management.

4) Retrieval Augmented Generation (RAG) and Vector Databases
Covers how to augment reasoning models with external knowledge bases, vector
search, and hybrid retrieval methods.

Curriculum

5) Tool Calling
Introduces methods for invoking external tools from reasoning models. Focus on
model context protocol (MCP), schema design, and execution management.

6) HPC Systems and Self Driving Labs
How SDPs connect to HPC workflows and experimental labs. Covers distributed
coordination, robotics, and federated agents.

7) Human–AI Workflows
Explores how scientists and agents collaborate: trust boundaries, interaction design,
and debugging.

8) Benchmarking and Evaluation
Frameworks for assessing agents and SDPs: robustness, validity, and relevance.

Readings

• Introduction - Model Context Protocol.

https://modelcontextprotocol.io/
https://modelcontextprotocol.io/
https://modelcontextprotocol.io/
https://modelcontextprotocol.io/

Today’s journey

• Why tool calling?
• From RPC → Function Calls → Model Context Protocol (MCP)
• Inside MCP: context, schema, runtime
• Agents using MCP (chemistry, simulation)
• Risks & design patterns

Motivation

• Pure text-based reasoning has limitations: e.g., computation,
precision, data freshness

• Thus we want tool-augmented reasoning: models calling external
APIs, databases, or simulations

• Much like a scientist using an instrument or database

Getting LLMs to calculate

What is the pH of a 0.01 M solution of hydrochloric acid?

• meta-llama/Meta-Llama-3-8B-Instruct: pH 1.0

• meta-llama/Meta-Llama-3-70B-Instruct: pH 2.0

Can be calculated: pH = –log10(0.01) = 2

tool_call: calculator.log10(x=0.01)

Issues/requirements

“Allow LLMs to run a wide variety of computational tools”

• Simply
• Accurately
• Consistently
• Securely
• …

Era System Key Feature
1976 Birrell & Nelson RPC Foundational RPC semantics
1984 SunRPC (ONC) XDR portable encoding
1991 DCE RPC Enterprise services & security
1991 CORBA Multi-language IDL, object model
1996 Java RMI Reflection-based Java RPC
2000 SOAP / WSDL XML self-describing contracts
2004 XML-RPC Simpler XML transport
2006 JSON-RPC Lightweight JSON protocol
2008 Protocol Buffers Binary schema serialization
2015 gRPC HTTP/2 + protobuf services
2011+ REST / OpenAPI Web self-describing resources
2015 GraphQL Query-based schema introspection
2024 MCP Model–tool context protocol

Evolution of
remote
procedure
call

http://bit.ly/4ok7BYU

http://bit.ly/4ok7BYU

Bridging between models and tools
Our LLM/RM expresses itself in language: e.g., “please run a program
to compute X” or “compute the negative log of 0.01”

Meanwhile:
• A “tool” might be an executable, Python function, workflow, …
• It might expect input, and produce output, in a variety of formats
• It might run on your PC, on an HPC system, in the cloud
• It might require specialized permissions to use
• The request may refer (implicitly or explicitly) to past interactions
• Available tools may change over time or depend on user identity
• Etc.

Model Context Protocol

A protocol designed to let models exchange and extend their context
in a standardized way

1) Models (LLMs, reasoning systems, multi-agent components)
• Need to interact with external resources (tools, files, APIs, simulations)
• MCP gives these models a defined communication channel to do so

2) Context = everything the model can condition on while reasoning
• external knowledge or data pulled from tools
• task parameters and metadata
• persistent state shared across calls or agents
• the results of prior computations

MCP contd.

3) Protocol: A structured, interoperable message format that allows
 models, clients, and tool servers to exchange context:
• how to describe tools (schemas, parameters)
• how to invoke them (requests/responses)
• how to carry metadata (context_id, auth_token, timestamp)
• how to share or update context objects across sessions

Model Context Protocol (MCP)
• “Using MCP, AI applications like Claude or ChatGPT can connect to data sources (e.g.

local files, databases), tools (e.g. search engines, calculators) and workflows (e.g.
specialized prompts)—enabling them to access key information and perform tasks.
• Think of MCP like a USB-C port for AI applications. Just as USB-C provides a standardized

way to connect electronic devices, MCP provides a standardized way to connect AI
applications to external systems.”

https://modelcontextprotocol.io/docs/getting-started/intro

https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/docs/getting-started/intro

User MCP
runtime

Model

MCP
server

Tool

Tool

Issues natural
language queries

Maintains
context

Queries
enhanced
with context

Tool
calls

E.g., simulating a chemical reaction
1) User asks: “Simulate a reaction between H₂ and O₂ at 300 K”
• Model uses simulate_chemical_reaction(reactants=["H2","O2"], temperature=300)
• Tool returns: {"products":["H2O"], "energy_released_kJ": 286}
à The model knows: a) product is water; b) reaction is exothermic.

2) User then asks: “Increase temperature by 50 degrees and rerun”
• What reaction? What temperature?
• With MCP, server remembers

• This model can reason: “Use the same reaction (H₂ + O₂) but with 350 K” and issue
simulate_chemical_reaction(reactants=["H2","O2"], temperature=350)

"context": {
 "previous_tool": "simulate_chemical_reaction",
 "reactants": ["H2","O2"],
 "temperature": 300,
 "products": ["H2O"]
}

User MCP
runtime

Model

MCP
server

Tool

Tool

Connect to
MCP server

simulate_chemical_reaction

plot_data

User MCP
runtime

Model

MCP
server

Tool

Tool

Provide
capabilities
description

Update context

simulate_chemical_reaction

plot_data

Example “capabilities” message

User MCP
runtime

Model

MCP
server

Tool

Tool

“Simulate a reaction
 between H₂ and O₂
 at 300 K”

Creates context_id
Initializes context

simulate_chemical_reaction

plot_data

User MCP
runtime

Model

MCP
server

Tool

Tool
Request to model,
enhanced with tool
information

simulate_chemical_reaction

plot_data

This context tells the model: “You are allowed to call a tool named
simulate_chemical_reaction. Here’s what it does and how to use it.”

The query states what it is that the user wants to do

User MCP
runtime

Model

MCP
server

Tool

Tool
Response
specifying
tool call

Field Description

tool_calls
The structured “function call” part that the MCP
client is looking for. The model has decided that
the user request should invoke a registered tool.

name
Matches a tool advertised in the MCP server’s
capabilities
(here, "simulate_chemical_reaction").

arguments
The parameters that the model inferred from the
user prompt and context.

finish_reason:
"tool_calls"

Indicates that the model has finished generating
text and is requesting a tool execution next.

Model request

Example request:

The MCP gateway or middleware looks up this name in its tool registry,
which lists all available tools and their corresponding:
• schema definitions
• execution handlers
• access controls

User MCP
runtime

Model

MCP
server

Tool

Tool

Forward to
MCP server

Field Purpose

type Identifies as a function call or tool execution request

id
Unique identifier for tracking call and matching
responses

context
Session information so the server can retrieve the
right state and validate authorization.

function
Contains the name and argument set that came
from the model’s tool_call.

metadata
Adds observability and traceability fields such as
client version or correlation IDs.

simulate_chemical_reaction

Schema validation

Before execution, the MCP layer validates the incoming JSON
arguments against the registered JSON Schema:

If validation succeeds, it moves on to execution

User MCP
runtime

Model

MCP
server

Tool

Tool

Calls
tool

Validates request:
• Confirm "simulate_chemical_reaction”

exists in its registry
• Checks args against registered JSON schema
• Authenticates caller via auth_token.
Executes the corresponding backend tool:
• E.g., Python script, API, or HPC workflow.
Returns structured response back to client

simulate_chemical_reaction

Execution binding

Once validated, the MCP runtime translates that function call into
an actual program invocation. Depending on the environment:

MCP acts as the adapter layer between the abstract “function name”
and the concrete execution environment

Environment Mapping Strategy

Local HPC node Spawn process: subprocess.run(["python3",
"run_simulation.py", "--reactants", ...])

Cloud function HTTP POST to endpoint URL with same payload
Containerized lab service Launch container with args injected via JSON or ENV vars
Workflow engine Submit job to Nextflow / Snakemake / Slurm via an adapter

Result serialization
The server-side script must return structured output (JSON) so MCP can
pass it back to the model:

The MCP layer captures this output and formats the response to the
model:

,

User MCP
runtime

Model

MCP
server

Tool

Tool

Returns
result

simulate_chemical_reaction

User MCP
runtime

Model

MCP
server

Tool

Tool
Return result of
tool call to model

plot_data

User MCP
runtime

Model

MCP
server

Tool

Tool
Natural
language
rendering

Updates context
Forwards to user

simulate_chemical_reaction

plot_data

User MCP
runtime

Model

MCP
server

Tool

Tool

“Rerun the reaction
at 40F higher”

Retrieves context
based on context id

simulate_chemical_reaction

plot_data

User MCP
runtime

Model

MCP
server

Tool

Tool
Request to model,
enhanced with tool
information

User MCP
runtime

Model

MCP
server

Tool

Tool
Response
specifying
tool call

Finally

{

 "role": "assistant",

 "content": "Rerunning at 350 K produced water again, releasing

 about 295 kJ of energy — slightly more than at 300 K."

}

Model learned tool calling conventions through fine-
tuning
Modern instruction-tuned models have been fine-tuned on examples
of tool calls using similar JSON patterns, e.g:

Through this exposure, model internalizes:
• When to decide a problem requires a tool

(math, chemistry, retrieval, plotting, etc.)
• How to pick correct tool name & fill arg schema
• Convention for structured responses (JSON, not text)

Thus when it sees our chemistry question, it recognizes that this looks
like a simulation request, matches the tool description in its prompt,
and emits:

We show that LMs can teach themselves to use external tools via
simple APIs and achieve the best of both worlds. We introduce
Toolformer, a model trained to decide which APIs to call, when to call
them, what arguments to pass, and how to best incorporate the results
into future token prediction. This is done in a self-supervised way,
requiring nothing more than a handful of demonstrations for each
API. We incorporate a range of tools, including a calculator, a Q&A
system, a search engine, a translation system, and a calendar.
Toolformer achieves substantially improved zero-shot performance
across a variety of downstream tasks, often competitive with much
larger models, without sacrificing its core language modeling abilities.

https://arxiv.org/pdf/2302.04761 Meta, 2022

https://arxiv.org/pdf/2302.04761

Exemplary ToolFormer predictions:Prompt to generate training data:

How a user natural-language request is
mapped to a specific function/program call
• The model learns to produce structured tool calls because it has

been trained or prompted with tool schemas
• The MCP layer provides the model with a “menu of actions”

• The model’s language generation then produces a JSON object naming
one of those actions, which MCP dispatches to real code

• The reasoning model thus goes from a vague natural question
→ first to a precise call like simulate_chemical_reaction
→ then to a simulation run on the server

MCP
client

MCP
server Resource

MCP
client

MCP
server Resource

f, g, h

g(a) g(a)

A “preference manipulation attack”

https://arxiv.org/abs/2503.23278

https://arxiv.org/abs/2503.23278

Other MCP capabilities

Category Purpose
Tools Declared functions or services the MCP server can execute
Prompts Parameterized prompt templates hosted by the server
Resources Named data stores or files the model can access
Schemas / Types Shared data definitions for interoperability
Jobs / Async Execution Long-running or queued tasks
Events / Subscriptions Push notifications from the server
Security & Policy Authentication, authorization, sandbox info
Telemetry/Provenance Logging and observability features
Documentation Human-readable and machine-readable API specs

Notifications
• MCP server can deliver notifications about anything that changes over time
• Clients can subscribe to those relevant to their session or workflow
• Examples:

Category Example Event Why Subscribe

Job lifecycle
on_job_started, on_job_complete,
on_job_failed

To track long-running tasks
(simulations, training runs).

Resource updates on_resource_modified To know when shared files or datasets
change

Tool availability
on_tool_registered,
on_tool_deprecated To keep a dynamic registry in sync.

User interactions on_message, on_comment_added For collaborative agents or co-pilot
IDEs.

System alerts on_quota_exceeded, on_auth_expiring Reliability, billing, or security
monitoring

https://modelcontextprotocol.io/specification/2025-06-18/server/tools

Notifications can be
used to inform client
of changes in
available tools

https://modelcontextprotocol.io/specification/2025-06-18/server/tools
https://modelcontextprotocol.io/specification/2025-06-18/server/tools
https://modelcontextprotocol.io/specification/2025-06-18/server/tools
https://modelcontextprotocol.io/specification/2025-06-18/server/tools
https://modelcontextprotocol.io/specification/2025-06-18/server/tools

Client à Server notification request

Client ß Server confirmation

Client ß Server notification

Value of notifications

• Asynchronous work: Lets the model or user move on while jobs run
elsewhere
• Efficiency: Avoids wasteful polling for status
• Responsiveness: Enables real-time UIs and chat agents that “know”

when new data arrives
• Integration: Allows triggers—one event can automatically start

another tool or prompt chain

Trust, safety, and security advice

https://modelcontextprotocol.io/specification/2025-06-18/server/tools

https://modelcontextprotocol.io/specification/2025-06-18/server/tools
https://modelcontextprotocol.io/specification/2025-06-18/server/tools
https://modelcontextprotocol.io/specification/2025-06-18/server/tools
https://modelcontextprotocol.io/specification/2025-06-18/server/tools
https://modelcontextprotocol.io/specification/2025-06-18/server/tools

https://arxiv.org/pdf/2503.23278?

https://arxiv.org/pdf/2503.23278

Framework Abstraction Notes Patterns

LangChain /
LangGraph

Chains &
Graph
runtimes

Deterministic
orchestration: explicit
control flow for tool use
and memory management

🟦Model → 🟥Chain/Graph Engine → 🟩Tool

AutoGen
Conversation
al multi-
agents

Emergent coordination via
natural-language dialogue;
minimal structure but
flexible

🟦Agent₁ ⇄ 🟧Dialogue (messages) ⇄ 🟦Agent₂ → 🟩Tool

OpenAI
Function
Calling

JSON schema
over HTTP

Introduced standardized
function-calling syntax
(names, arguments);
foundation for MCP
message format

🟦Model → (JSON request) → 🟩API Endpoint

Model
Context
Protocol
(MCP)

Context-
centric
protocol

Adds persistent context,
authentication,
asynchronous jobs, and
notification subscriptions

🟦Model ⇄ 🟪MCP Runtime ⇄ 🟩Server (Tools, Prompts,
 Notifications)

LangChain 🟦Model → 🟥Chain/Graph Engine → 🟩Tool

AutoGen 🟦Agent₁ ⇄ 🟧Dialogue (messages) ⇄ 🟦Agent₂ → 🟩Tool

Function
calling

🟦Model → (JSON request) → 🟩API Endpoint

MCP 🟦Model ⇄ 🟪MCP Runtime ⇄ 🟩Server (Tools, Prompts, Notifications)

Function call

Messages

JSON schema call

Context-rick request + response + notifications

Deterministic
orchestration

Emergent
conversation

Standardized
API

Persistent
context

“Function-calling” loop behind OpenAI & MCP

Step What Model Sees What Happens

1 Tool list with names
and JSON Schemas Model “knows” what actions are possible

2 User question Model reasons about intent
3 Model output Chooses matching tool name + arguments
4 MCP gateway Executes mapped function on the server
5 Tool result → model Model integrates result into final reply

https://www.techrxiv.org/doi/full/10.36227/techrxiv.174495492.22752319

https://www.techrxiv.org/doi/full/10.36227/techrxiv.174495492.22752319

More about context

Context is everything the model and runtime know about the session
so far: the accumulated knowledge that allows new reasoning to build
on prior work:
• User Intent: prompt text, instructions
• Previous Tool Calls: function names + arguments
• Tool Outputs: structured JSON results, plots, metrics
• Metadata: auth token, timestamps, user/session IDs, project name

The MCP runtime retains structured context across model invocations,
allowing each new request to begin from a richer, more informed state

Shared context for collaborative agents
Planner
agent MCP

runtime
with

contextExecutor
agent

• Planner agent generates job configurations and schedules them on
an HPC system
• Executor agent monitors those jobs and updates status back into the

shared context
• Both operate independently but communicate implicitly through

the context store, not via free text

Race conditions with shared context
• Consider our example system:
• The Planner agent adds a new HPC job to the shared jobs[] list.
• The Executor agent polls the same list and updates job status to “running”

• If both write at once, one update may overwrite the other: a race condition

Strategy Description

Context versioning Each context update carries a version or timestamp; the runtime
rejects stale writes (“optimistic concurrency”)

Locking /
transactions

The MCP runtime enforces a short-lived lock or atomic transaction
on the context_id

Event ordering Use event queues so updates are applied in order of submission

Immutable logs Append-only event logs prevent overwrites; agents replay events
to reconstruct current state

Bottlenecks with shared context
Since the MCP runtime or gateway usually mediates all context reads/writes, it
can become a bottleneck, especially if:
• Many agents share the same session
• Each tool call pushes large payloads (simulation results, data files)
• Clients repeatedly poll for updates rather than using notifications

Strategy Description

Sharding contexts Split large sessions into sub-contexts (e.g., one per experiment or
job)

Caching & replication Read-only replicas for context queries; only writes go to the
master context store

Asynchronous notifications Replace polling with push events (on_context_update)
Streaming / chunking Transfer large tool outputs in chunks or via external resource URIs

Simulation agent example

• Goal: Simulate picoseconds of thermal vibrations in a tiny, periodic
Lennard-Jones crystal, while an agent automatically balances
timestep (accuracy) and neighbor settings (speed) to keep energy
stable and throughput high
• A simple agent that launches, monitors, and adapts a small simulation

(LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator)
• Automate closed-loop tuning (timestep, neighbor skin)
• Measure performance (ns/day) & quality (energy drift)
• Iterate toward a target automatically
• Same pattern scales to HPC (Parsl/PBS, Slurm)

• Single-file agent: run → parse → adapt → stop

The sample system: Structure

• A tiny crystal of 864 identical particles on an FCC lattice
(6×6×6 unit cells, periodic boundaries)
• 6x6x6x(4 particles per unit cell) = 864

• 8 corners × 1/8 per corner atom = 8 × 1/8 = 1 atom
• 6 face-centered atoms × 1/2 atom per unit cell = 3 atoms

• Argon-like atoms modeled as type-1
Lennard-Jones (LJ) particles:
• LJ parameters: σ ≈ 3.4 Å, ε ≈ 0.0103 eV
• Mass ≈ 39.948 g/mol (argon)

• Periodic boundaries make it behave like a small repeating piece of an
infinite solid

Face-centered Cubic
unit Cell (FCC)

The sample system: Physics and dynamics

• Interactions: Pairwise Lennard-Jones potential (short-range attraction/
repulsion typical for noble gases and generic “simple” matter)
• Ensemble: NVE (energy-conserving) molecular dynamics
• I.e., Number of particles, Volume, Energy are constant
• No thermostat; total energy should remain roughly constant if the timestep is

small enough

• Initialization: Maxwell–Boltzmann velocities at ~300 K (to give atoms
thermal motion)
• Integrator: Velocity-Verlet with a timestep to tune (typically ~1 fs)
• Duration: run 2000⇒ ~2 ps of simulated time for timestep = 1 fs

What happens during simulation

• Atoms vibrate around lattice sites (phonon-like motion of a crystalline
solid)
• No chemistry or bonds: just LJ collisions and attractions keeping the

crystal together
• With NVE, total energy (kinetic + potential) should be nearly constant;

any steady drift indicates the timestep is too large (numerical error)

An agentic application

• Runs simulation while monitoring quality and performance
• Quality: Energy drift (in parts per million); smaller better (more faithful physics)
• Performance: Simulated ns/day per day of wall clock, derived from steps,

timestep, and loop time

• Tweaks two knobs to maximize performance while managing drift
• Timestep: Smaller is more accurate (less drift) but slower (fewer ns/day)
• Skin (neighbor list buffer): Larger means fewer neighbor list rebuilds (often faster)

but more pair checks per step (could be slower)

Minimal implementation

Agent repeatedly:
• Proposes timestep and skin parameters
• Calls Runner to run LAMMPS with parameters and capture logs
• Calls Parser on logs to extract ns/day + total energy drift
• Adapts timestep and skin according to quality-first policy
• Stop if conditions met

LAMMPS input (agent-aware)
in.min (key lines)
include params.vars
...
neighbor ${skin} bin
timestep ${timestep}
velocity all create 300.0 4928459
fix 1 all nve
thermo 100
thermo_style custom step temp etotal pe ke press vol
run 2000

E.g.:
 variable timestep equal 0.001
 variable skin equal 2.0

Runner (calls LAMMPS)

def run_lammps(params, base_input='in.min'):
work = Path(tempfile.mkdtemp(prefix='lmp_'))
(work/'params.vars').write_text(

'\n'.join([f'variable {k} equal {v}' for k,v in params.items()])+'\n'
)
shutil.copy(base_input, work/'in.lmp')
res = subprocess.run(['lmp','-in','in.lmp'], cwd=work,

text=True, stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT)

(work/'log.lammps').write_text(res.stdout)
return {'rc':res.returncode, 'stdout':res.stdout, 'workdir':str(work)}

LAMMPS (29 Aug 2024)
Lattice spacing in x,y,z = 3.52 3.52 3.52
Created orthogonal box = (0 0 0) to (21.12 21.12 21.12)
Created 864 atoms
…
Setting up Verlet run ...
 Unit style : metal
 Current step : 0
 Time step : 0.001
 Step Temp TotEng PotEng KinEng Press Volume
 0 300 7496.4263 7462.9608 33.465452 5642388.7 9420.6689

…
 1900 149.92544 7496.5823 7479.8579 16.724409 5652197.9 9420.6689
 2000 136.04848 7496.5809 7481.4044 15.176412 5653088.1 9420.6689
…

LAMMPS output

Parser: Extract energy and ns/day from log
def parse_metrics(stdout, timestep_fs):

m_ns = re.search(r'([0-9.]+)\s*ns/day', stdout)
if m_ns:

ns_per_day = float(m_ns.group(1))
else:

m = re.search(r'Loop time of\s+([0-9.]+).*?for\s+(\d+)\s+steps', stdout, re.S)
ns_per_day = (float(m.group(2))/float(m.group(1))*timestep_fs*1e-6*86400) if m else 0.0

etot_idx, etotals = None, []
for line in stdout.splitlines():

if line.startswith('Step'):
cols = line.split()
for name in {'TotEng','Etot','etotal','E_tot','Etotal'}:

if name in cols: etot_idx = cols.index(name); break
continue

if etot_idx is not None:
toks = line.split()
if toks and toks[0].isdigit() and len(toks)>etot_idx:

try: etotals.append(float(toks[etot_idx]))
except: pass

drift_ppm = 1e6*(etotals[-1]-etotals[0])/abs(etotals[0]) if len(etotals)>=2 and
 abs(etotals[0])>1e-12 else 0.0

return {'ns_per_day': round(ns_per_day,3), 'drift_ppm': round(drift_ppm,2)}

Policy + Stop
def next_params(p, m):

p = {k: float(v) for k,v in p.items()}

if m['drift_ppm'] > 50.0:

p['timestep'] = max(0.25*p['timestep'], 0.8*p['timestep'])

p['skin'] = max(1.0, 0.8*p.get('skin',2.0))

return p

if m['ns_per_day'] < 2.0:

p['skin'] = 1.2*p.get('skin',2.0)

return p

def stop_condition(m, it, it_max=6):

return (m['drift_ppm'] <= 50.0 and m['ns_per_day'] >= 2.0) or it >= it_max

Agent Loop

params = {'timestep':1e-3, 'skin':2.0}

for it in range(1, max_iters+1):

res = runner(params)

metrics = parse_metrics(res['stdout'], timestep_fs=params['timestep'])

print(f"[it {it}] {metrics} params={params} rc={res['rc’]}\

 workdir={res['workdir']}")

if stop_condition(metrics, it, max_iters): break

params = next_params(params, metrics)

An example run

% python agent_local.py --mode real --input in.min.2 --min-iters 3

[it 1] metrics={'ns_per_day': 104.768, 'drift_ppm': 20.62} params={'timestep':
0.001, 'skin': 2.0} dur_s=3.03 rc=0
workdir=/var/folders/md/n0k7fdb144z5np1s0fyh06kw0000gn/T/lmp_puc7bvv8

[it 2] metrics={'ns_per_day': 105.673, 'drift_ppm': 20.62} params={'timestep':
0.001, 'skin': 2.0} dur_s=2.70 rc=0
workdir=/var/folders/md/n0k7fdb144z5np1s0fyh06kw0000gn/T/lmp_wj3tja04

[it 3] metrics={'ns_per_day': 106.022, 'drift_ppm': 20.62} params={'timestep':
0.001, 'skin': 2.0} dur_s=2.69 rc=0
workdir=/var/folders/md/n0k7fdb144z5np1s0fyh06kw0000gn/T/lmp_jyj8dpv3

Possible extensions
• Swap local runner for Parsl+PBS to enable HPC execution
• Add an MCP server and schema-validated tools
• Swap rules for a small Bayesian optimizer (e.g., scikit-optimize) or

Thompson sampling on (quality-pass, perf) – bandit policies
• Parallel sweeps: Run batches of experiments at once, pushing a task

per parameter set; one coordinator agent consolidates metrics and
steers next batch
• Telemetry & provenance (JSONL per iter)

Thompson sampling

• A simple, powerful way to pick actions when you’re unsure which is
best—by sampling from your current belief about each action’s
quality and choosing the action that wins the sample.
• Core idea (multi-armed bandit)
• You have several options (“arms”), each with an unknown payoff.
• Maintain a probabilistic belief about the payoff of each arm.
• Sample one payoff from each arm’s belief distribution.
• Pick the arm with the highest sampled payoff.
• Observe the real payoff, update that arm’s belief, repeat.

• Approach naturally balances exploration (uncertain arms sometimes
win the sample) and exploitation (good-looking arms usually win)

Thompson sampling (1933): https://doi.org/10.2307/2332286

https://doi.org/10.2307/2332286

Bandit policies
• A bandit policy is a lightweight learning

strategy for choosing among options (a.k.a. “arms”) when you
must balance exploration vs. exploitation:
• Exploitation: pick what looks best so far.
• Exploration: try uncertain options that might be better.

• Named after the “multi-armed bandit” (slot machines with unknown
payouts). Your agent repeatedly:
• Selects an arm (e.g., a parameter setting),
• Observes a reward (e.g., performance),
• Updates its belief about that arm,
• Repeats, aiming to minimize regret (missed reward vs. an oracle that always

picks the best)

In our application
• The basics:

• Each configuration (e.g., (timestep, skin) bucket) is an arm

• Reward could be ns/day subject to quality constraints (e.g., heavy penalty if drift > threshold)

• Bandits adapt quickly with few trials without needing gradients or global models

• Common bandit policies
• ε-greedy: With probability ε explore; otherwise exploit the best empirical mean

• UCB (Upper Confidence Bound): Pick arm with best mean + uncertainty bonus; explores arms with few samples

• Thompson Sampling (TS): Keep a posterior over each arm’s reward and sample from it to decide

• Contextual bandits: include features/context (e.g., problem size, hardware node) so the choice adapts to conditions

• To add a quality constraint (“drift”), treat it as constrained bandit:
• Reward = ns/day if drift_ppm ≤ 50; otherwise reward = 0 (or strong negative)

• Or use a two-objective scalarization: reward = ns/day – λ·max(0, drift_ppm − 50) with λ chosen to enforce quality

How about an MCP interface?

• For example, if a reasoning model should invoke your runner as a tool
with typed schemas, validation, and guardrails
• You want a clean boundary between “LLM plans” and “HPC

execution” (auth, quotas, logging, replay)
• Multiple clients (IDE, notebooks, chat UIs, other agents) need the

same API
• You’ll add more tools (VASP, Slurm submit, telemetry) and want one

consistent interface

Creating an MCP interface

• Keep current agent code as is
• Add an MCP server that exposes a few tools:
• run_job(kind, params) → {run_id, workdir}
• kind ∈ {"lammps","synthetic"}
• params schema-validates timestep and skin (ranges, units).

• get_status(run_id) → {state, metrics?, logs_tail?}
• fetch_artifact(run_id, path) → bytes or signed URL
• Optional: submit_slurm(spec), get_node_counters(run_id)

MCP: JSON schema for run_job function

mcp_server.py (skeleton)
import asyncio, json, ray
from mcp.server import Server
from parse import parse_metrics
from runner_lammps import run_lammps
from runner_synth import run_synth

server = Server("agentic-hpc")

RUNS = {} # run_id -> {obj_ref, params, kind, workdir}

@server.tool("run_job", input_schema={...}, # insert JSON above
 output_schema={"type":"object","properties":{"run_id":{"type":"string"}},"required":["run_id"]})
async def run_job(ctx, input):
 kind = input["kind"]
 params = input["params"]
 if kind == "lammps":
 obj = run_lammps.options(num_cpus=1).remote(params)
 else:
 obj = run_synth.remote(params)
 run_id = f"run-{len(RUNS)+1}"
 RUNS[run_id] = {"obj": obj, "params": params, "kind": kind}
 return {"run_id": run_id}

Tiny MCP server skeleton in Python (1/2)

Allows any MCP-aware client (e.g.,
LLM orchestrator, IDE plugin, chat
UI) to call run_job and poll
get_status with schema-validated
inputs and structured outputs

@server.tool("get_status",
 input_schema={"type":"object","properties":{"run_id":{"type":"string"}},"required":["run_id"]},
 output_schema={"type":"object","properties":{
 "state":{"enum":["pending","finished","error"]},
 "metrics":{"type":"object"},
 "workdir":{"type":"string"},
 "rc":{"type":"integer"},
 "logs_tail":{"type":"string"}
 }})
async def get_status(ctx, input):
 run = RUNS[input["run_id"]]
 ready, _ = ray.wait([run["obj"]], timeout=0)
 if not ready:
 return {"state":"pending"}
 res = ray.get(run["obj"])
 metrics = parse_metrics(res["stdout"], timestep_fs=float(run["params"]["timestep"]))
 tail = "\n".join(res["stdout"].splitlines()[-40:])
 state = "finished" if res["rc"] == 0 else "error"
 return {"state": state, "metrics": metrics, "workdir": res["workdir"], "rc": res["rc"], "logs_tail": tail}

if __name__ == "__main__":
 ray.init(address="auto", ignore_reinit_error=True)
 asyncio.run(server.run_stdio())

Tiny MCP server skeleton in Python (2/2)

Allows any MCP-aware client (e.g.,
LLM orchestrator, IDE plugin, chat
UI) to call run_job and poll
get_status with schema-validated
inputs and structured outputs

Example: Catalyst screening workflow

An AI agent that explores new catalysts for the hydrogenation of CO₂ to
methanol needs to
• Retrieve prior experimental data
• Run new DFT simulations
• Store and compare results
• Notify collaborators when promising catalysts are found

We define a set of tools (executable functions that perform calculations)

A set of resources (persistent data collections used by these tools)

A set of prompts (reusable reasoning templates)

Capability
definitions
typically
provide
more detail

Category Example fields Purpose

Identity name, type, uri How the client refers to the
resource

Access controls
access, permissions,
auth_scope Who can read/write

Schema / structure schema or format Expected data fields or file
format

Storage metadata
backend, persistence,
retention_days Where and how long it lives

Lifecycle policy
create_on_demand,
snapshot, archive

Whether the server can
instantiate or destroy it

Provenance hooks
versioning, checksum,
created_by

Traceability for scientific
workflows

Data resources may be created in various ways

Pattern What happens
Static or
pre-existing

The server points to an existing database, file store, or dataset it
manages (e.g., a PostgreSQL DB, an S3 bucket, a local directory).

Dynamic /
provisioned

On first use, the server creates a new database or collection for a
session or project (e.g., catalyst_db for experiment exp-42).

Proxy / adapter The server simply acts as a gateway to another system’s resource
(e.g., wrapping a REST API or institutional data repository).

An MCP server declares resources in its capabilities document so that clients know what
kinds of persistent objects they can access. How those resources come to exist depends on
the server implementation.

Another example prompt

User query: “Search catalyst database for Cu–ZnO systems with prior CO₂ adsorption data,
run new DFT calculations at 600 K if none exist, and update the lab notebook with results.”

System maps to second prompt capability to generate this structured prompt call:

The prompt capability then drives the model to:
• Formulate the reasoning steps (search DB → run DFT → update notebook)
• Invoke the appropriate tools (query_database, run_dft, append_notebook_entry)
• Reference the correct resources (catalyst_db, dft_results, lab_notebook)

Retrieve a resource: Agent queries the catalyst database:
 {"resource": "catalyst_db",
 "query": "SELECT * WHERE metal='Cu' AND support='ZnO’”}

MCP returns structured entries (Cu–ZnO catalysts and descriptors).

Perform computations (tools): For each entry returned, the model issues:

{
 "tool_call": {
 "name": "run_dft",
 "arguments": {"structure": "CuZnO", "adsorbate": "CO2"}
 }
}

The MCP server executes the DFT job—e.g., on an HPC system.

Store results (resources)
The resulting data file is stored via a resource URI:
 resource: "dft_results/CuZnO_CO2_run47.json”

Record provenance (resources)
The agent appends an entry to its lab_notebook resource:

{
 "experiment_id": "exp-47",
 "inputs": {"catalyst": "CuZnO", "adsorbate": "CO2"},
 "output_uri": "dft_results/CuZnO_CO2_run47.json"
}

Analyze results (prompts)
The agent invokes analyze_trends to summarize adsorption energy correlations

Notify collaborators (notifications)
When a run yields adsorption energy < –1.2 eV, the MCP server triggers a notification:

{
 "type": "notification",
 "event": "new_promising_catalyst",
 "payload": {
 "catalyst": "CuZnO",
 "adsorption_energy": -1.23,
 "result_uri": "dft_results/CuZnO_CO2_run47.json"
 }
}

Tools, prompts, and resources all guide the
LLM/RM
• Intent recognition: Model understands that it must first check an

existing data resource
• Resource access: Issues a read against catalyst_db resource
• Conditional logic: If no matching record is found, it prepares and

sends a tool call to run_dft
• Resource write: When results return, appends a record to
lab_notebook resource

Summary: MCP’s rich capabilities

Capability Example Purpose
Tool simulate_chemical_reaction Execute code
Resource catalyst_db, lab_notebook Persistent data
Prompt analyze_trends Reasoning template
Notification on_job_complete Async events

