
AI Agents for Science

Instructor: Ian Foster
TA: Alok Kamatar

Crescat scientia; vita excolatur https://canvas.uchicago.edu/courses/67079
CMSC 35370 -- https://agents4science.github.io

Lecture 6, October 15: HPC Systems and Self-Driving Labs

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

The joys and pains of context stuffing

• RAG and MCP both stick lots of stuff in the LLM context, and then rely
on the LLM/RM to sort out which of that stuff is relevant to a query
• Both trust the model’s internal attention mechanisms to select what’s relevant

• How well does that work in practice?
• Better than simply relying on parametric knowledge for knowledge-intensive

tasks (i.e., tasks that humans could not reasonably be expected to perform
without access to an external knowledge source)
• But with well-known limitations

• Are there better ways?
• Yes sometimes!

When does it work reasonably well?

• Small, coherent retrievals: If you retrieve a few highly relevant documents
(say 3–5 short chunks), the model’s self-attention can effectively “spot” the
relevant spans

• Tightly phrased queries: When the prompt or question aligns semantically
with retrieved text, models exhibit high lexical-semantic precision

• High-end reasoning models (e.g. GPT-4o, Claude-Opus, Gemini 1.5 Pro) can
maintain 50–100 KB effective context with surprisingly good relevance
discrimination

à In these conditions, simple context injection can yield strong results:
 70–90% of correct answer coverage in many RAG benchmarks

https://arxiv.org/pdf/2508.01780

Diverse tasks from six domains: Office (e.g., spreadsheet analysis), Lifestyle (e.g., news retrieval),
Leisure (e.g., video game inquiries), Finance (e.g., stock price monitoring), Travel (e.g., ticket
search), Shopping (e.g., product recommendations). All:

(1) Time-varying: Tasks exhibit time-sensitive outcomes;
(2) Long-horizon: Tasks require multiple tools to complete;
(3) Genuine utility: Tasks address authentic user needs.

Table 2: Task success rate results for the frontier models. Evaluation using Deepseek-V3.

https://arxiv.org/pdf/2508.01780
https://arxiv.org/pdf/2508.01780

https://arxiv.org/pdf/2508.07575

Number of
example
queries

https://arxiv.org/pdf/2508.07575
https://arxiv.org/pdf/2508.07575

https://arxiv.org/pdf/2508.07575

Calls correct tool with
correct arguments

Gets correct
answer

https://arxiv.org/pdf/2508.07575
https://arxiv.org/pdf/2508.07575

https://arxiv.org/pdf/2508.07575

https://arxiv.org/pdf/2508.07575
https://arxiv.org/pdf/2508.07575

When does it break down?
• Context overflow and dilution

• As the number of retrieved or tool-provided items grows, the model’s attention
becomes diffuse. Even if the context window is large (1 M tokens or more), relevance
doesn’t scale linearly: the model struggles to “ignore” irrelevant snippets.

• No structured grounding
• The model may hallucinate relationships between documents that were merely co-

located in context. There’s no formal representation of provenance or logic

• Implicit reasoning load
• The LLM must both decide what’s relevant and perform the reasoning in one pass,

which can be cognitively challenging

• Token efficiency and cost
• For large tool ecosystems (like MCP servers with dozens of resource schemas), naive

context-stuffing becomes computationally and financially expensive

Why do RAG and MCP still do it?

• It is simple and flexible:
• The model’s attention acts as an implicit information retrieval and fusion layer
• You don’t need special index structures or symbolic reasoning.
• It is model-agnostic: any LLM can “read” context text.

• That simplicity is powerful for prototyping or for small-scale pipelines
(like MCP servers serving schema-validated JSONs into context)
• But for scientific or multi-agent systems, limits become visible quickly

An example refinement:
Structured retrieval and routing
Instead of throwing everything into context, use a retrieval router:
• Perform retrieval and scoring per schema or tool
• Let an agentic planner choose which retrieved results to pass downstream
• Adapt routing algorithm based on results over time

Phase Component Function
① Query reception Router Performs & scores retrieval per schema/tool
② Planning Agentic planner Chooses which results/tools to use, and how
③ Execution Executor(s) Runs chosen tools or models
④ Feedback System logs, verifier Reports success, latency, quality
⑤ Adaptation Router Updates scoring weights and schemas via feedback

Scientific example
User: “Estimate adsorption energy of CO on Pt(111) at 300 K.”
• Retrieval Router
• Finds candidate tools and contexts: CatalystDB (data), LAMMPS (simulation)
• Returns scored contexts to planner

• Agentic Planner
• Decides: “Retrieve existing data from CatalystDB. If uncertainty > 0.2 eV, run

simulation via LAMMPS”; constructs that two-step plan
• Executor
• Executes the plan and reports success and performance

• Feedback
• Router updates tool weights (LAMMPS success +1; CatalystDB coverage −0.1)
• Planner logs that simulation accuracy improved overall plan quality

A few other ideas

• Evaluation and Feedback Loops
• Human-in-the-loop correction: When routing confidence is low, ask user to

confirm or clarify (“Did you mean the LAMMPS simulator or QuantumEspresso?”)
• Confidence scoring and logging: Store embeddings of queries and their matched

tools; analyze misroutes to refine descriptions or retrain the matcher

• Long-Term Improvements
• Tool descriptions co-evolve with usage: Auto-summarize past successful

invocations into richer tool documentation
• Federated resource directories: Shared registries across labs or institutions, with

consistent tagging, so that routers can learn from aggregate usage

Curriculum
1) Why AI agents for science?

AI agents and the sense-plan-act-learn loop. Scientific Discovery Platforms (SDPs): AI-
native systems that connect reasoning models with scientific resources.

2) Frontiers of Language Models
Surveys frontier reasoning models: general-purpose LLMs (GPT, Claude), domain-
specific foundation models (materials, bio, weather), and hybrids. Covers techniques
for eliciting better reasoning: prompting, chain-of-thought, retrieval-augmented
generation (RAG), fine-tuning, and tool-augmented reasoning.

3) Systems for Agents
Discusses architectures and frameworks for building multi-agent systems, with
emphasis on inter-agent communication, orchestration, and lifecycle management.

4) Retrieval Augmented Generation (RAG) and Vector Databases
Covers how to augment reasoning models with external knowledge bases, vector
search, and hybrid retrieval methods.

Curriculum

5) Tool Calling
Introduces methods for invoking external tools from reasoning models. Focus on
model context protocol (MCP), schema design, and execution management.

6) HPC Systems and Self Driving Labs
How SDPs connect to HPC workflows and experimental labs. Covers distributed
coordination, robotics, and federated agents.

7) Human–AI Workflows
Explores how scientists and agents collaborate: trust boundaries, interaction design,
and debugging.

8) Benchmarking and Evaluation
Frameworks for assessing agents and SDPs: robustness, validity, and relevance.

Readings and assignment

• Self-Driving Laboratories for Chemistry and Materials Science,
Chemical Reviews

• Empowering Scientific Workflows with Federated Agents

https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00489
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00489
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00489
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00489
https://arxiv.org/abs/2505.05428
https://arxiv.org/abs/2505.05428
https://arxiv.org/abs/2505.05428

Agents and HPC

AI-native Scientific Discovery Platform

Reasoning
Core

Thought-action fabric

Knowledge
substrate

Domain
FMs

Memory Trust layer

Run GNN-surrogate for adsorption
energies; prune to 300 candidates

Automated
laboratories

1st principles
models

High-performance
computing
• A high-performance computing

(HPC) system is designed to
perform large-scale, complex, or
time-critical computations much
faster than a typical personal
computer or server
• It achieves this by combining many

powerful processors, large amounts
of memory, high-speed networking,
and efficient software to act as a
single unified machine

 E.g., Aurora at Argonne à

166 Racks
10,624 Nodes
21,248 CPUs
63,744 GPUs
84,992 NICs
8 PB HBM
10 PB DDR5
1018 DP flops
1019 MP flops

Argonne AI testbed

Why HPC in a scientific discovery platform?

• Run detailed computational simulations of physical phenomena
• Individual simulations to study distinct systems in great detail
• Many simulations to characterize many different systems

• Train and fine-tune LLMs and other foundation models
• Large-scale inference with LLMs, RMs, other foundation models
• Analyze enormous quantities of data
• Run specialized agents

Training
Dataset

Generator

Assembler EstimatorDatabase

Validator Optimizer

Chameleon
Cloud

CPUs Storage CPUs

Ligands

MOF
Candidates

Stable
MOFs

Optimized
MOFs

CO2
Capacities

Lattice
Strain

Legend

Agent

Resource

Data Flow

Run specialized agents: e.g., MOFA

HPC systems have specialized environments

• Batch schedulers
• Globus Compute

Academy: Empowering Scientific Workflows
with Federated Agents

Greg Pauloski, Alok Kamatar, Yadu Babuji, Ryan Chard, Mansi Sakarvadia,
Kyle Chard, Ian Foster

Diaspora

9 September 2025

Multi-Agent Systems

24

From: The Virtual Lab of AI agents designs new SARS-CoV-2 nanobodies (Nature, 2025)

From: ChemGraph: An Agentic Framework for Computational Chemistry Applications (2506.06363)

From: The AI-Scientist V2: Workshop Level Automated Discovery via Agentic Tree Search (2504.08066)

https://arxiv.org/pdf/2506.06363
https://arxiv.org/pdf/2504.08066

Centralized Model of Multi-Agent Systems

25

Laptop/Workstation

Cloud-Hosted LLMs

Tools

MCP Server

MCP Server

Tools

Tools

“Agents” are typically
LLMs with separate
context

All run in a centralized
location

Use tools either locally
or through MCP servers

LangChain Under the Hood

Multi-agent systems define a graph!

Pregel: Large-Scale Graph Processing

● Divide computation into “supersteps”
● At each node:

○ Process incoming message
○ (optionally) send message to neighbor
○ (optionally) vote to halt

26

https://dl.acm.org/doi/pdf/10.1145/1807167.1807184
https://dl.acm.org/doi/pdf/10.1145/1807167.1807184
https://dl.acm.org/doi/pdf/10.1145/1807167.1807184
https://dl.acm.org/doi/pdf/10.1145/1807167.1807184

Actor Systems

More generally, Agents are built on Actor Systems

● Actors: computational entities that communicate through message
passing

● On receiving a message an actor can:
○ Send a finite number of messages
○ Create a finite number of actors
○ Update their state

● No shared state
● Inherently concurrent

27

Scientific Agents Beyond LLMs

Conversational Assistants

28

Multi-Site Workflows

Integrating
Experiments/Observations

Steering Workflows

Scientific Agents: Agent Behaviors

29

High Autonomy

Low Autonomy

High
Interactivity

Low
Interactivity

Other defining aspects:
● Persistent vs ephemeral
● General vs narrow purpose
● Embodiment

Long-running agentic science
apps will incorporate many kinds
of agent behaviors.

Academy primitives support the
creation diverse agent types.

LLM Agents

Service AgentsMonitor Agents

Optimizer Agents

Additional Challenges

● Models beyond LLMs
○ Protein Language Models
○ Generative Chemistry Models
○ Surrogate Models
○ Control Models

● Diverse, Distributed Resources
● Differing messaging/communication requirements
● Varying availability
● Federated authentication
● Failures and Resilience

30

Agentic Workflows

Experimental Facilities Data StorageCompute

Agentic
Infrastructure

● Agentic middleware
● Use federated resources
● Simple agent abstractions

31

Academy

Agentic Middleware
Software layer that transparently manages the lifecycle,

communication, and coordination of autonomous agents across
distributed computing environments.

32

Agentic Middleware: Scope & Challenges

33

Low Level
Challenges

High Level
Challenges

Deployment

Protocols

LLM APIs

Multi-agent
Conversations

LangChain, AutoGen,
Pydantic AI, etc.Academy Cool Science?

Tool CallingMobility

Fault
Tolerance

Data
Movement

Agentic Middleware: Using Research Infrastructure

Centralized
● Agents co-located (workstation, cloud)
● Research infrastructure available via APIs

(REST, SDKs, MCP Servers, …)
● Use infrastructure via tool calling

++ Rapidly growing library ecosystem
-- Limited APIs for infrastructure

34

Decentralized
● Agents distributed across infrastructure
● Agents interact asynchronously
● Use infrastructure directly (actuate a robot,

submit job, …)

++ Data locality, perf., loose coupling
-- Deployment complexity

LangChain, AutoGen,
Pydantic AI, etc.

Academy

How does Academy support the expression of diverse agent
behaviors and deployment across distributed/federated

resources?

35

User

Handle

Handle

Control

Actions
Agent

State

Agent

Control

Actions

State

HandlesHandles

Exchange (Data Plane)
Mailbox Mailbox Mailbox

Executor(s) (Control Plane)

36

Focus 1: Program
diverse agents and

interactions

Focus 2: Deploy
agents on
federated
resources

Focus 3:
Coordinate async
agent messaging

https://academy.proxystore.dev/latest/concepts/

Globus Compute + Parsl

https://academy.proxystore.dev/latest/concepts/

Exchange Design

Spatially Decoupled

● Messages are passed through a mediated communication mechanism
● Agents do not have to live in the same location
● Relies on outbound communication only

Temporally Decoupled

● Messages are stored in mailboxes
● Agents do not have to be online at the same time

37

Execution Options

● Local Execution
○ Threads or Processes
○ Communication can happen through in-memory data-structures

● Cluster/HPC Execution
○ Parsl: A pure python framework for managing workflows on HPC resources
○ Configurable executor/launcher for interfacing with scheduler (i.e. sbatch and

srun)
○ Can communicate over high-speed interconnects

● Remote Execution
○ Globus Compute: A federated function as a service
○ Turns any compute resource into an endpoint that can run remote functions
○ Communicate through authenticated cloud-hosted exchange

(exchange.academy-agents.org)

38

Writing Apps in Academy

39

import asyncio
from academy.agent import Agent, action, loop

class Example(Agent):
 def __init__(self) -> None:
 self.count = 0 # State stored as attributes

 @action
 async def square(self, value: float) -> float:
 return value**2

 @loop
 async def count(self, shutdown: asyncio.Event):
 while not shutdown.is_set():
 self.count += 1
 asyncio.sleep(1)

Agents defined
by a behavior

Clients & other
agents can

request actions

Instance of a
behavior is state

Control loops for
autonomous

behavior

40

https://academy.proxystore.dev/latest/get-
started/

https://academy.proxystore.dev/latest/get-started/
https://academy.proxystore.dev/latest/get-started/
https://academy.proxystore.dev/latest/get-started/

from academy.exchange.hybrid import HybridExchange
...
from academy.manager import Manager

gce = GlobusComputeExecutor('<UUID>')

async with await Manager.from_exchange_factory(
 factory=LocalExchangeFactory(),
 executors=gce,
) as manager:
 behavior = Example() # From the prior slide
 handle = await manager.launch(behavior)

 result = await handle.square(2)
 assert result == 4

 await handle.shutdown()

Single interface
for managing
your agents

Interact with
agents via

handles

Pass handles to
other agents

41

https://academy.proxystore.dev/latest/get-
started/

Launch agents via
Globus Compute

Launch agent
and get handle

https://academy.proxystore.dev/latest/get-started/
https://academy.proxystore.dev/latest/get-started/
https://academy.proxystore.dev/latest/get-started/

Using Research Infrastructure through Tool Calling

Comparison to Alternatives
Tool Servers (MCP)
Rely on externally reachable endpoints that
are blocked by facility policies. Requires user
to manage services, infrastructure, and VPNs

Func-as-a-Service (Globus Compute)
Easier remote execution (no VPN,
infrastructure management) but tools must
be stateless, short-running tasks

42

from academy.handle import Handle
from langchain_core.tools import tool

def make_sim_tool(handle: Handle[Simulator]):
 @tool
 async def compute_property(smiles: str) -> float:
 """Compute molecule property."""
 return await handle.compute_property(smiles)
 return compute_property

tool = make_tool(agent_handle)
print(tool.args_schema.model_json_schema())

Turn agent handles into LLM
framework “tools”

Case Studies

43

Use Case: MOF Discovery

Metal Organic Frameworks (MOF)

➔ Composed of organic molecules (ligands)
and inorganic metals (nodes)

➔ The sponges of materials science!
➔ Porous structures that adsorb and store

gases
➔ Topologies can be optimized for targeted gas

storage → Carbon Capture
Intractable search space of

ligand, node, & geometry
combinations

How to efficiently discover MOFs with
desirable properties for target applications?

44

MOFA: Online learning + GenAI + Simulation

Embodied
Agents*

AI Agent

Knowledge Agent

Computational
Agents

Yan et al., “MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow” (Under Review)

45

https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651

MOFA through Autonomous Agents

Training
Dataset

Generator

Assemble
r EstimatorDatabase

Validator Optimizer

Chameleon
Cloud

CPUs Storage CPUs

Ligands

MOF
Candidates

Stable
MOFs

Optimized
MOFs

CO2
Capacities

Lattice
Strain

Legend

Agent

Resources

Data Flow

Agents executed remotely via Globus
Compute

46

Why is this agentic model
better?
➔ Placement: Move agents to

resources
➔ Separation of concerns: Resource

acquisition and scaling based on local
workload

➔ Loose coupling: Swap agents or
integrate new agents (e.g., SDL)

➔ Shared agents: Multiple workflows
can share agents (microservice-like)

First batches of ligands

MOF buffer fills and Assembler scales down

Validator scales out to start processing MOFs

Optimizer scales out after first validated MOFs

Estimate CO2 of optimized MOFs

Assembler and Estimator auto-scale

Batch job walltime expires

MOFA Agents Trace

47

Reach out if you are interested:
alokvk2@uchicago.edu

Please Star the Repo and Join the
Slack!
● github.com/academy-agents
● academy-agents.org

48Summary |

Questions?

J.
Gregory
Pauloski

Yadu
Babuji

Ryan
Chard

Alok
Kamatar

Mansi
Sakarvadia

Kyle
Chard

Ian
Foster

⭐ Academy on GitHub!

http://github.com/academy-agents
http://github.com/academy-agents
http://github.com/academy-agents
http://github.com/academy-agents
http://academy-agents.org
http://academy-agents.org
http://academy-agents.org
http://academy-agents.org

Self-driving laboratories

Self-driving laboratories

• “A self-driving lab integrates automation, computation, and artificial
intelligence to iteratively design, execute, and analyze experiments
without human supervision”
• Automation can enable greater use of scarce/expensive resources and also

enhance reliability and reproducibility
• Computation and artificial intelligence can enable more efficient use of

scarce/expensive resources
• Democratization due to reduced resource and skill requirements

• An “SDL” is a form of Scientific Discovery Platform
• Here we focus on the mechanics of accessing experimental apparatus

https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00055

https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00055
https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00055

AI-native Scientific Discovery Platform

Reasoning
Core

Thought-action fabric

Knowledge
substrate

Automated
laboratories

Domain
FMs

Memory Trust layer

Start robotic synthesis

1st principles
models

Instruments as Scientific Discovery Platform nodes

• A reasoning model structured requests to orchestrate actions across
simulations, databases, and instruments:
• Simulation tools: For predictive or exploratory modeling
• Laboratory apparatus: For physical validation or synthesis
• Data stores & knowledge graphs: For retrieval and hypothesis grounding

• All communicate via a shared context and schema, enabling the
reasoning model to:
• Generate hypotheses
• Choose the best execution resource (e.g., simulation vs. lab)
• Interpret results and refine hypotheses

Safety and Robustness
• Avoid unsafe states (thermal,

chemical, mechanical)
• Handle ambiguous or missing

sensor feedback
• Detect and recover from hardware

or reasoning errors

Knowledge and Feedback
• Fuse experimental data with

simulation predictions
• Maintain provenance across

heterogeneous sources
• Adapt future reasoning based on

performance and uncertainty metrics

Interface & Control Reasoning & Planning
• Labs expose diverse, human-oriented

control layers (GUIs, scripts)
• Reasoning model discovers instrument

capabilities via APIs or MCP schemas
• Actions have real-world latency and

uncertain observability

• Translate high-level scientific goals
into valid, safe instrument commands

• Coordinate lab actions with
simulations and data queries

• Anticipate time-coupled tasks and
downstream data dependencies

Challenges specific to physical equipment

ICP

NMR

Opentrons
 OT2 robot

PAL3
robot

UR5e
robotSupplies

hotel

Big Kahuna
robot

RAPID-200: “Benchtop” experiments in air

RAPID-200:
Experiments in
glovebox for air
sensitive
materials

RAPID-200:
Experiments in
vacuum for solid-
state growth and
characterization

Modular design of robotic instruments

https://arxiv.org/abs/2308.09793

https://arxiv.org/abs/2308.09793

Hierarchical API with modularity and abstraction;
domain protocols compiled to robotic commands

arxiv.org/abs/2308.09793

Modular design of robotic instruments

https://github.com/AD-SDL/MADSci/

Modular Autonomous
Discovery for Science
(MADSci) Framework

https://arxiv.org/abs/2308.09793
https://github.com/AD-SDL/MADSci/
https://github.com/AD-SDL/MADSci/
https://github.com/AD-SDL/MADSci/
https://github.com/AD-SDL/MADSci/

BIO workcell

RPL workcell

arxiv.org/abs/2308.09793 8ID workcell

CNM workcell

Modular design of robotic instruments

https://arxiv.org/abs/2308.09793

https://github.com/AD-SDL/MADSci/

https://github.com/AD-SDL/MADSci/
https://github.com/AD-SDL/MADSci/
https://github.com/AD-SDL/MADSci/
https://github.com/AD-SDL/MADSci/

Rory Butler

Brian Hsu, Priyanka Setty, Rory Butler, et al.

Task Model Cycles Failure modes Outcome

PCR Mistral 5 (maxed out) Volume errors; step
formatting Failed

Claude Opus 4 1 Extra thermocycling step
(4 vs 3) Success

GPT-4o 1 Missing thermocycling
instructions Success

Cell
Painting Mistral 5 (maxed out) No source/destination

mapping; invalid logic Failed

Claude Opus 4 3
Volumes wrong (2/51);
vague repeats (11);
missing pipette type (15)

Partial
success

GPT-4o 1 Minor formatting issues Success

Brian Hsu, Priyanka Setty, Rory Butler, et al.

Prince, Chan, Vriza, Zhou,
Sastry, Luo, Dearing,
Harder, Vasudevan, &
Cherukara, Opportunities
for retrieval and tool
augmented large language
models in scientific facilities
Npj Comp. Materials,
2024 https://doi.org/10.1038/s41524-024-01423-2

Execution of a robot motor move based on a user query to CALMS

CALMS parses the user query to extract the material and Bragg
peak, queries Materials Project for the lattice constants, and then
calculates the position of and moves the beamline diffractometer
to the requested peak

CALMS: Context-Aware Language Model for Science

Further experiments with LLMs

https://doi.org/10.1038/s41524-024-01423-2
https://doi.org/10.1038/s41524-024-01423-2
https://doi.org/10.1038/s41524-024-01423-2
https://doi.org/10.1038/s41524-024-01423-2
https://doi.org/10.1038/s41524-024-01423-2
https://doi.org/10.1038/s41524-024-01423-2
https://doi.org/10.1038/s41524-024-01423-2

