
Systems Requirements for Scalable Agentic AI
Ian Foster

AI models: To infinity and beyond?

AI progress is commonly framed around models
• Scale, parameters, benchmarks
• Models as stateless inference engines
• Execution assumed to be request–response
• Concerns: Scalable training, inference

 This framing is increasingly incomplete

Foundation
model

Q A

From models to agents

Deployed systems increasingly:
• Persist over time
• Initiate actions autonomously
• Interact continuously with tools, APIs, people
• Accumulate state and context

These systems behave as agents

We need to enable agentic systems to scale
and to engage with the science ecosystem

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent
control

loop

Foundation
model

Environment
APIs • Tools • Services •
Agents • People • World

actions effects observations

Agent

“Agents” are not just an application layer

Agentic systems reorganize computation
• Control flow moves to inside the system
• Responsibility shifts from caller to agent
• Time horizon expands beyond individual

executions

This reorganization results in new demands for
tools and facilities

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent
control

loop

Foundation
model

Environment
APIs • Tools • Services •

People • World

actions effects observations

Agent

Agents engage with science ecosystem

An agent, like a human researcher:
• must be able to access the diverse elements of

the modern scientific ecosystem
• may act as a generator of heterogeneous

workloads: LLM calls, HPC jobs, service calls,
data transfers, instrument actions, …
• must be managed to avoid excessive use of

scarce resources

These are not concerns specific to “intelligence,”
but AI agents result in new challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent
control

loop

Foundation
model

Environment
APIs • Tools • Services •
Agents • People • World

actions effects observations

Agent

Agents engage with science ecosystem

An agent, like a human researcher:
• must be able to access the diverse elements of

the modern scientific ecosystem
• may act as a generator of heterogeneous

workloads: LLM calls, HPC jobs, service calls,
data transfers, instrument actions, …
• must be managed to avoid excessive use of

scarce resources

These are not concerns specific to “intelligence,”
but AI agents result in new challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent
control

loop

Foundation
model

Environment
APIs • Tools • Services •
Agents • People • World

actions effects observations

Agent

Agentic orchestration: Enabling agent actions

Delegation
& identity

Agents act on
behalf of scientists,
securely and with

scoped permissions

Workflow
control

Agents run logic-rich
flows, with

conditionals, retries,
parallel tasks

Cross-domain
execution

Agents across labs,
clouds, and

instruments via
federated middleware

Audit & policy
 boundaries
Every action is

logged, reversible,
and bound by

policy (zero-trust)

Agentic middleware: Scope and challenges

9

Low-level
challenges

High-level
challenges

Deployment

Protocols

LLM APIs

Multi-agent
Conversations

LangChain,
AutoGen, Pydantic
AI, etc.

Academy

Tool CallingCross-domain
execution

Fault
Tolerance Data

Movement

Scaling

Client

Handle

Handle

Control

Actions
Agent

State

Agent

Control

Actions

State

HandlesHandles

Exchange (Data Plane)
Mailbox Mailbox Mailbox

Launcher(s) (Control Plane)

Broad agent
definition

Not limited to
LLMs / multi-
agent
conversations

Focus 1: How to
program
arbitrary agents
and their
interaction

Focus 2: How to
deploy agents on
federated
resources

Focus 3: How to
coordinate async
agent messaging

Exploring agentic middleware: Academy

https://academy-agents.org

Greg Pauloski Kyle Chard Alok Kamatar

https://academy-agents.org/
https://academy-agents.org/
https://academy-agents.org/

import asyncio
from academy.behavior import Behavior, action, loop

class Example(Behavior):
 def __init__(self) -> None:
 self.count = 0 # State stored as attributes

 @action
 async def square(self, value: float) -> float:
 return value**2

 @loop
 async def count(self, shutdown: asyncio.Event):
 while not shutdown.is_set():
 self.count += 1
 asyncio.sleep(1)

Agents defined
by a behavior

Clients & other
agents can

request actions

Instance of a
behavior is state

Control loops for
autonomous

behavior

https://docs.academy-agents.org/latest/get-started/

https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/

Communication and execution

Exchange
● Asynchronous communication through

mailboxes
● Every agent/client in system has a unique

mailbox
● Local & distributed implementations
● Optimized for low-latency
● Hybrid communication model
● Prefer direct communication between agents

when possible; fall back to indirect
communication via object store

● Pass-by-reference with ProxyStore for large data
12Federated Agents |

Launcher
● Not required but enables

remote execution of agents
● Returns handle to launched

agent
● Local threads or processes
● Distributed with Parsl
● Federated with Globus

Compute

HPC Centric Capabilities
➔ Secured with Globus Auth

➔ Agent coordination across HPC facilities

◆ Cloud hosted exchange

➔ Agents with ability to run tools on HPC

➔ Agent sharing across users/groups
➔ Launch 1000s of agents

LLM Centric Capabilities
➔ Launch custom LLMs as agents

➔ Integrate agents from multiple
frameworks (Langgraph, Pydantic...)

➔ Wrap science apps for function calling
➔ Expose apps via MCP

➔ Implement multi-agent communication
patterns

Guides
➔ https://docs.academy-agents.org/main/guides/hpc/

➔ https://docs.academy-agents.org/main/guides/llm/

➔ https://academy-agents.org/academy-extensions/latest/guides/mcp/

https://docs.academy-agents.org/main/guides/hpc/
https://docs.academy-agents.org/main/guides/hpc/
https://docs.academy-agents.org/main/guides/hpc/
https://docs.academy-agents.org/main/guides/hpc/
https://docs.academy-agents.org/main/guides/llm/
https://docs.academy-agents.org/main/guides/llm/
https://docs.academy-agents.org/main/guides/llm/
https://docs.academy-agents.org/main/guides/llm/
https://docs.academy-agents.org/main/guides/llm/
https://academy-agents.org/academy-extensions/latest/guides/mcp/
https://academy-agents.org/academy-extensions/latest/guides/mcp/
https://academy-agents.org/academy-extensions/latest/guides/mcp/
https://academy-agents.org/academy-extensions/latest/guides/mcp/
https://academy-agents.org/academy-extensions/latest/guides/mcp/
https://academy-agents.org/academy-extensions/latest/guides/mcp/

Agents engage with science ecosystem

An agent, like a human researcher:
• must be able to access the diverse elements of

the modern scientific ecosystem
• may act as a generator of heterogeneous

workloads: LLM calls, HPC jobs, service calls,
data transfers, instrument actions, …
• must be managed to avoid excessive use of

scarce resources

These are not concerns specific to “intelligence,”
but AI agents result in new challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent
control

loop

Foundation
model

Environment
APIs • Tools • Services •
Agents • People • World

actions effects observations

Agent

Scaling challenges

• We should anticipate thousands of autonomous agents, each able to
(indeed, eager to) generate millions of heterogeneous tool invocations
over long time horizons
• Easy problem: Scale tool discovery, deployment, invocation, monitoring
• Hard problem: Manage this new class of workload
• Our facilities are designed to support work by humans, with resource use

constrained by a mix of policy and human judgment
• Do we need new abstractions and policies for software entities that decide what

to call next?
• Can this exploding complexity benefit from (or require?) AI?

Early work on the easy problem

Goal: Rapid deployment of LLMs (and LLM-based agents) on DOE supercomputers

Initial results: We leverage parallel I/O methods to reduce vLLM startup time on 2048 Aurora
nodes from many hours to a few minutes

136 GB model
(Llama 3.3 70B Instruct)

Scalable token generation:
● Average 89 input tokens/sec/node,

241 generated tokens/sec/node
● Generate 1.44 billion tokens in 35 mins on

2048 Aurora nodes
Next steps:
● Frontier and Perlmutter; MPI
● Rapid inter-agent communication
● Tool calling

New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These are core CS research challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent
control

loop

Foundation
model

Environment
APIs • Tools • Services •

People • World

actions effects observations

Agent

• How should resource budgets be expressed for self-initiated
processes?

• How can isolation and sandboxing be enforced proactively, not
reactively?

• What are principled semantics for pausing, checkpointing,
migrating, and terminating agents?

• How should agents that spawn other agents be accounted for?

New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These are core CS research challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent
control

loop

Foundation
model

Environment
APIs • Tools • Services •

People • World

actions effects observations

Agent

• How can goals, preferences, and prohibitions be expressed
declaratively?

• How do constraints remain binding as agents adapt strategies?
• How should conflicts between objectives be resolved and

exposed?
• What is the boundary between agent discretion and system-

enforced control?

New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These are core CS research challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent
control

loop

Foundation
model

Environment
APIs • Tools • Services •

People • World

actions effects observations

Agent

• What does correctness mean when behavior evolves over
time?

• How can safety envelopes or regret bounds replace binary
correctness?

• How do we verify properties over extended reasoning-
action loops?

• How should failure be attributed across long decision
sequences?

New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These are core CS research challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent
control

loop

Foundation
model

Environment
APIs • Tools • Services •

People • World

actions effects observations

Agent

• How can agent behavior be summarized intelligibly over time?
• When should agents escalate decisions to humans?
• How can limited human attention be allocated across many

agents?
• How can systems support intervention without halting

operation?

New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These CS research problems span systems, theory,
HCI, etc.—and AI

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent
control

loop

Foundation
model

Environment
APIs • Tools • Services •

People • World

actions effects observations

Agent

Summary: Agentic middleware challenges

● Access & privileges
● Agent discovery
● Asynchronous communication
● Fault tolerance
● Interfaces
● Mobility
● Persistent stateful execution
● Provenance
● …

Federated Agents | Pauloski et al., IEEE Computer
https://arxiv.org/pdf/2510.13081

https://arxiv.org/pdf/2510.13081
https://arxiv.org/pdf/2510.13081
https://arxiv.org/pdf/2510.13081

Summary: Opportunities for TPC

• Define agentic workloads as a class
• Establish benchmarks beyond throughput
• Define interfaces for execution control
• Collaborate on open source software for scalable orchestration
• Share agent implementations
• Coordinate cross-site experiments
• Align model, systems, and facilities communities

