Systems Requirements for Scalable Agentic Al

f.d |HE UNIVERSITY OF

CHICAGO globus @& Argonne =1

Al progress is commonly framed around models

* Scale, parameters, benchmarks

* Models as stateless inference engines Y

* Execution assumed to be request—-response Q 1 I A

* Concerns: Scalable training, inference
Foundation

Human PhD using Google in their field : 81%

0.8

model

07
X

X X X
o 05 X

< 0. X
x x b

X
04 x
x a7
H X A . .

0.3} Human PhD using Google outside their specialty: 34%

X X X

B I S S N R R This framing is increasingly incomplete

%1 %1 4 'l Y » Y » Y
% 5 & X $ o » o &
» » ® » ° » 0 » 3 ~

S

From models to agents rl“F
Deployed systems increasingly: a Agent I
* Persist over time (N | Internal state

. . "/ Goals/preferences
* Initiate actions autonomously Persistent | 1o feontext

. . I

* Interact continuously with tools, APls, people C?::,LO Policy/reasoning
* Accumulate state and context !

Foundation

model

These systems behave as agents

actions | effects |observations

We need to enable agentic systems to scale Environment
and to engage with the science ecosystem APIs * Tools e Services e
Agents e People World

“Agents” are not just an application layer

Agentic systems reorganize computation
* Control flow moves to inside the system
* Responsibility shifts from caller to agent

* Time horizon expands beyond individual
executions

This reorganization results in new demands for
tools and facilities

S
BN

I

e
@

control
loop

action

Persistent

Agent

Internal state

Goals/preferences
Memory/context
Policy/reasoning

!
Foundation
model

s | effects |observations

APlIs

Environment

* Tools ® Services e
People e World

S

Agents engage with science ecosystem S

An agent, like a human researcher:

 must be able to access the diverse elements of
the modern scientific ecosystem

* may act as a generator of heterogeneous
workloads: LLM calls, HPC jobs, service calls,
data transfers, instrument actions, ...

* must be managed to avoid excessive use of
scarce resources

These are not concerns specific to “intelligence,”
but Al agents result in new challenges

b

a Agent
Internal state
O t tat

Goals/preferences

Persistent
control
loop

Memory/context
Policy/reasoning

!
Foundation
model

actions | effects |observations

Environment

APIs ¢ Tools ® Services
Agents ¢ People ® World
N 2 —/

9,
Agents engage with science ecosystem S

b

/7 Agent
 must be able to access the diverse elements of G Internal state
the modern scientific ecosystem Goals/preferences

An agent, like a human researcher:

Persistent

fh B Memory/context

[]

may act as a generator o .eterogen.eous "' | policy/reasoning
workloads: LLM calls, HPC jobs, service calls,

4
data transfers, instrument actions, ...]
Foundation

model

* must be managed to avoid excessive use of
scarce resources

actions | effects |observations

These are not concerns specific to “intelligence,” Environment
but Al agents result in new challenges APIs ¢ Tools e Services e
_| Agents e People World Ny

Agentic orchestration: Enabling agent actions

5, 3B @&

Delegation Workflow Cross-domain Audit & policy
& identity control execution boundaries
Agents act on Agents run logic-rich Agents across labs, Every action is
behalf of scientists, flows, with clouds, and logged, reversible,
securely and with conditionals, retries, instruments via and bound by

scoped permissions parallel tasks federated middleware policy (zero-trust)

Agentic middleware: Scope and challenges

Fault Scaling _
Tolerance Data Protocols Multl-aggnt
Conversations
Movement C g :
Deployment 1055°00MaN 1401 Calling LLM APIs
B execution
Low-level High-level
challenges challenges
LangChain,
Academy ——> <+— AutoGen, Pydantic

Al, etc.

Exploring agentic middleware: Academy

Greg Pauloski Kyle Chard Alok Kamatar

FOCU; 3: How to Exchange (Data Plane)
coordinate async JRpANASANRRRN o . JRDMMSAAAAMARRRN ARMMRAMAMARRRRRRRRRRS \
agent messaging 22 Mailbox 54 Mailbox - 4 Mailbox

PG ; g ; Broad agent

Focus 1: How to ,, ,,,,,,,,,,,,,,,,,,,,, | i_f_?____’_A}q_'_Q'_ﬂ_‘_S_____J i__79___A§F_'_9ﬂ_$____J definition
pogam 5 Handle —— |0, Control | —— () Control - yotim
arbitra ry age nts l:;l7:7:i::i7:7:::::t: ‘_'_'_'_C_'_/'_'_‘_'_'_'_‘_'_'_'_'_‘_'_'_'_‘_'_'_'_‘_'_'_‘I i_'_"_‘_'_'_'_‘_'_'_'_'_‘_‘_'_'_‘_'_'_'_‘_‘_'_'I 4 NOt Ilmlte dl to
and their “ Handle —— €5 * Handles ——— Handles ééﬁﬁ/mutl-
interaction .

8 state B state conversations
Focus 2: How to l I I

deploy agents on
federated
resources

Launcher(s) (Control Plane)

https://academy-agents.org

https://academy-agents.org/
https://academy-agents.org/
https://academy-agents.org/

Agents defined
by a behavior

Clients & other
agentscan ——
request actions

import asyncio
from academy.behavior import Behavior, action, loop
\
class Example(Behavior):
def init (self) -> None:
self.count = @

|__—» @action
async def square(self, value: float) -> float:
return value**2

@loop
async def count(self, shutdown: asyncio.Event):
while not shutdown.is_set(): —

Instance of a
behavior is state

Control loops for

self.count += 1
asyncio.sleep(1)

https://docs.academy-agents.org/latest/get-started/

autonomous
behavior

https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/

Communication and execution

Exchange Launcher

e Asynchronous communication through « Not required but enables

mailboxes remote execution of agents

o Every agent/client in system has a unique

. e Returns handle to launched
mailbox

agent
e Local & distributed implementations ®
o Local threads or processes

e Distributed with Parsl

o Prefer direct communication between agents » Federated with Globus
when possible; fall back to indirect Compute
communication via object store

o Optimized for low-latency
e Hybrid communication model

o Pass-by-reference with ProxyStore for large data

°§<§'PAcademy

HPC Centric Capabilities LLM Centric Capabilities
- Secured with Globus Auth - Launch custom LLMs as agents
- Agent coordination across HPC facilities - Integrate agents from multiple

f ks (L h, Pydantic...
¢ Cloud hosted exchange rameworks (Langgraph, Pydantic...)

Wrap science apps for function callin
- Agents with ability to run tools on HPC ” P PP g

. - Expose apps via MCP
- Agent sharing across users/groups

- Implement multi-agent communication

- Launch 1000s of agents patterns

Guides
- https://docs.academy-agents.org/main/quides/hpc/

- https://docs.academy-agents.org/main/guides/lim/

- https://academy-agents.org/academy-extensions/latest/guides/mcp/

https://docs.academy-agents.org/main/guides/hpc/
https://docs.academy-agents.org/main/guides/hpc/
https://docs.academy-agents.org/main/guides/hpc/
https://docs.academy-agents.org/main/guides/hpc/
https://docs.academy-agents.org/main/guides/llm/
https://docs.academy-agents.org/main/guides/llm/
https://docs.academy-agents.org/main/guides/llm/
https://docs.academy-agents.org/main/guides/llm/
https://docs.academy-agents.org/main/guides/llm/
https://academy-agents.org/academy-extensions/latest/guides/mcp/
https://academy-agents.org/academy-extensions/latest/guides/mcp/
https://academy-agents.org/academy-extensions/latest/guides/mcp/
https://academy-agents.org/academy-extensions/latest/guides/mcp/
https://academy-agents.org/academy-extensions/latest/guides/mcp/
https://academy-agents.org/academy-extensions/latest/guides/mcp/

S

Agents engage with science ecosystem S

An agent, like a human researcher:

 must be able to access the diverse elements of
the modern scientific ecosystem

* may act as a generator of heterogeneous
workloads: LLM calls, HPC jobs, service calls,
data transfers, instrument actions, ...

* must be managed to avoid excessive use of
scarce resources

These are not concerns specific to “intelligence,”
but Al agents result in new challenges

b

a Agent
Internal state
O t tat

Goals/preferences

Persistent
Memory/context
control

loop Policy/reasoning

¥

Foundation
model

actions | effects |observations

Environment

APIs ¢ Tools ® Services
Agents ¢ People ® World
N 2 —/

Scaling challenges

* We should anticipate thousands of autonomous agents, each able to
(indeed, eager to) generate millions of heterogeneous tool invocations
over long time horizons

* Easy problem: Scale tool discovery, deployment, invocation, monitoring

* Hard problem: Manage this new class of workload

* Our facilities are designed to support work by humans, with resource use
constrained by a mix of policy and human judgment

* Do we need new abstractions and policies for software entities that decide what
to call next?

* Can this exploding complexity benefit from (or require?) Al?

Frequency (counts)

Early work on the easy problem

Goal: Rapid deployment of LLMs (and LLM-based agents) on DOE supercomputers

Initial results: We leverage parallel I/O methods to reduce vLLM startup time on 2048 Aurora
nodes from many hours to a few minutes

1600

512 nodes mmmmm

ol | 136 GB moae| iz4modes == | Scalable token generation:
(Llama 3.3 708 Instruct) e Average 89 input tokens/sec/node,
241 generated tokens/sec/node
e Generate 1.44 billion tokens in 35 mins on

2048 Aurora nodes
Next steps:

I- @ Frontier and Perlmutter; MPI

1200
1000
800 -
600
400

200 -

® Rapid inter-agent communication
100 150 200 Lo—mm—— . @ Tool calling

Startup Time (seconds)

9,
New research problems)

Beyond model capability and alighment (Agent \

* Execution environments for persistent agents/\/>

* How should resource budgets be expressed for self-initiated

Internal state

"
"/ Goals/preferences

Persistent

processes? B Memory/context

* How can isolation and sandboxing be enforced proactively, not loop Policy/reasoning
reactively? 1|

* What are principled semantics for pausing, checkpointing, .
migrating, and terminating agents? Foundation

* How should agents that spawn other agents be accounted for? model

actions | effects |observations

Environment

APIs ¢ Tools ® Services
People e World

S

New research problems S
Beyond model capability and alighment a Agent |\
* Execution environments for persistent agents (N | Internal state
. . Goals/preferences
* Programming models for constrained autonomy =" [Pereieent y
| emory/context
* How can goals, preferences, and prohibitions be expressed CT:(ELO Policy/reasoning
declaratively? T

* How do constraints remain binding as agents adapt strategies?

* How should conflicts between objectives be resolved and Foundation
exposed?
model
* What is the boundary between agent discretion and system-
enforced control? actions | effects |observations

Environment

APIs ¢ Tools ® Services
People e World

New research problems

Beyond model capability and alignment

* Execution environments for persistent agents
* Programming models for constrained autonomy
* Correctness for adaptive, long-horizon behavior A~ oo, | Policy/reasoning

What does correctness mean when behavior evolves over
time?

How can safety envelopes or regret bounds replace binary
correctness?

How do we verify properties over extended reasoning-
action loops?

How should failure be attributed across long decision
sequences?

S
BN

2

/7 Agent "\
Internal state
O t tat

Goals/preferences

Persistent

Memory/context
control

y

Foundation

model

actions | effects |observations

Environment

APIs ¢ Tools ® Services
People e World

New research problems)

Agent

Internal state
Goals/preferences

Beyond model capability and alignment a
* Execution environments for persistent agents

ersistent

* Programming models for constrained autonomy

Memory/context
. . . control ;)
* Correctness for adaptive, long-horizon behavior, oop | Policy/reasoning
y

* Oversight interfaces for continuous operation

* How can agent behavior be summarized intelligibly over time?
* When should agents escalate decisions to humans?
* How can limited human attention be allocated across many

agents?

Foundation

model

actions | effects |observations

* How can systems support intervention without halting
operation?

Environment

APIs ¢ Tools ® Services
People e World

S

New research problems rl“F
Beyond model capability and alighment a Agent
* Execution environments for persistent agents G Internal state
: : Goals/pref

* Programming models for constrained autonomy Persistent Moa b

. . . B emory/context
* Correctness for adaptive, long-horizon behavior loop | Policy/reasoning
* Oversight interfaces for continuous operation !

Foundation

model

actions | effects |observations

These CS research problems span systems, theory,

HCI, etc.—and Al Environment

APIs ¢ Tools ® Services
People e World

Summary: Agentic middleware challenges

Agentic Discovery: Closing the Loop with
e Access & pr|V|Ieges Cooperative Agents

J. Gregory Pauloski, University of Chicago, Chicago, IL, 60637, USA

. Kyle Chard, University of Chicago, Chicago, IL, 60637, USA
o Agent discovery

lan Foster, Argonne National Laboratory, Lemont, IL, 60439, USA

Abstract—As data-driven methods, artificial intelligence (Al), and automated

° Asynch ronous communication

workflows accelerate scientific tasks, we see the rate of discovery increasingly

limited by human decision-making tasks such as setting objectives, generating
([] Fa U It tO I e ra n C e hypotheses, and designing experiments. We postulate that cooperative agents are

Publish @ — ® Objective

o I n te rfa C e S Storftapdt?]issfeminagé Stothapdtf‘issfeminaFe
e L oveston O
« Mobility

o Manage trade offs & resources
E Analysis M Knowledge
. . Discover trends, \& Enforcemgpt Gather relevant o
o Persistent stateful execution
Navigate avenues for discovery
ST -Ef Prediction
£

interpret results learn from results
o Provenance
Perfolfm simulations, = ﬁen:tr:;;tssftzlie
FIGURE 2. The scientific method is an iterative process (stages depicted in the central loop). Specialized agents (depicted as

boxes with corresponding stages indicated by color) can carry out the stages autonomously. Agents can also transcend stages
to enable long-term planning, exploration, and safety.

Exploration &

Pauloski et al., IEEE Computer
https.//arxiv.org/pdf/2510.13081

https://arxiv.org/pdf/2510.13081
https://arxiv.org/pdf/2510.13081
https://arxiv.org/pdf/2510.13081

Summary: Opportunities for TPC

* Define agentic workloads as a class

* Establish benchmarks beyond throughput

* Define interfaces for execution control

* Collaborate on open source software for scalable orchestration
* Share agent implementations

* Coordinate cross-site experiments

* Align model, systems, and facilities communities

