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AI models: To infinity and beyond?

AI progress is commonly framed around models
• Scale, parameters, benchmarks
• Models as stateless inference engines
• Execution assumed to be request–response
• Concerns: Scalable training, inference

      This framing is increasingly incomplete
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From models to agents

Deployed systems increasingly:
• Persist over time
• Initiate actions autonomously
• Interact continuously with tools, APIs, people
• Accumulate state and context

These systems behave as agents

We need to enable agentic systems to scale 
and to engage with the science ecosystem
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“Agents” are not just an application layer

Agentic systems reorganize computation
• Control flow moves to inside the system
• Responsibility shifts from caller to agent
• Time horizon expands beyond individual 

executions

This reorganization results in new demands for
tools and facilities
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Agents engage with science ecosystem

An agent, like a human researcher:
• must be able to access the diverse elements of 

the modern scientific ecosystem
• may act as a generator of heterogeneous 

workloads: LLM calls, HPC jobs, service calls, 
data transfers, instrument actions, …
• must be managed to avoid excessive use of 

scarce resources  

These are not concerns specific to “intelligence,” 
but AI agents result in new challenges
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Agentic orchestration: Enabling agent actions

Delegation 
& identity

Agents act on 
behalf of scientists, 
securely and with 

scoped permissions

Workflow
control

Agents run logic-rich 
flows, with 

conditionals, retries, 
parallel tasks

Cross-domain 
execution

Agents across labs, 
clouds, and 

instruments via 
federated middleware

Audit & policy
 boundaries
Every action is 

logged, reversible, 
and bound by 

policy (zero-trust)



Agentic middleware: Scope and challenges
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Broad agent 
definition

Not limited to 
LLMs / multi-
agent 
conversations

Focus 1: How to 
program 
arbitrary agents 
and their 
interaction

Focus 2: How to 
deploy agents on 
federated 
resources

Focus 3: How to 
coordinate async 
agent messaging

Exploring agentic middleware: Academy

https://academy-agents.org 

Greg Pauloski Kyle Chard Alok Kamatar
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import asyncio
from academy.behavior import Behavior, action, loop

class Example(Behavior):
    def __init__(self) -> None:
        self.count = 0  # State stored as attributes

    @action
    async def square(self, value: float) -> float:
        return value**2

    @loop
    async def count(self, shutdown: asyncio.Event):
        while not shutdown.is_set():
            self.count += 1
            asyncio.sleep(1)

Agents defined 
by a behavior

Clients & other 
agents can 

request actions

Instance of a 
behavior is state

Control loops for 
autonomous 

behavior

https://docs.academy-agents.org/latest/get-started/
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Communication and execution 

Exchange
● Asynchronous communication through 

mailboxes
● Every agent/client in system has a unique 

mailbox
● Local & distributed implementations
● Optimized for low-latency
● Hybrid communication model
● Prefer direct communication between agents 

when possible; fall back to indirect 
communication via object store

● Pass-by-reference with ProxyStore for large data
12Federated Agents  |

Launcher
● Not required but enables 

remote execution of agents
● Returns handle to launched 

agent
● Local threads or processes
● Distributed with Parsl
● Federated with Globus 

Compute 



HPC Centric Capabilities
➔ Secured with Globus Auth 

➔ Agent coordination across HPC facilities

◆ Cloud hosted exchange

➔ Agents with ability to run tools on HPC

➔ Agent sharing across users/groups
➔ Launch 1000s of agents

LLM Centric Capabilities
➔ Launch custom LLMs as agents

➔ Integrate agents from multiple 
frameworks (Langgraph, Pydantic...)

➔ Wrap science apps for function calling
➔ Expose apps via MCP

➔ Implement multi-agent communication 
patterns

Guides
➔ https://docs.academy-agents.org/main/guides/hpc/

➔ https://docs.academy-agents.org/main/guides/llm/

➔ https://academy-agents.org/academy-extensions/latest/guides/mcp/
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Scaling challenges

• We should anticipate thousands of autonomous agents, each able to 
(indeed, eager to) generate millions of heterogeneous tool invocations 
over long time horizons
• Easy problem: Scale tool discovery, deployment, invocation, monitoring  
• Hard problem: Manage this new class of workload
• Our facilities are designed to support work by humans, with resource use 

constrained by a mix of policy and human judgment
• Do we need new abstractions and policies for software entities that decide what 

to call next?
• Can this exploding complexity benefit from (or require?) AI? 



Early work on the easy problem

Goal: Rapid deployment of LLMs (and LLM-based agents) on DOE supercomputers

Initial results: We leverage parallel I/O methods to reduce vLLM startup time on 2048 Aurora 
nodes from many hours to a few minutes 

136 GB model
(Llama 3.3 70B Instruct)

Scalable token generation:
● Average 89 input tokens/sec/node, 

241 generated tokens/sec/node
● Generate 1.44 billion tokens in 35 mins on 

2048 Aurora nodes
Next steps:
● Frontier and Perlmutter; MPI
● Rapid inter-agent communication
● Tool calling



New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These are core CS research challenges
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• How should resource budgets be expressed for self-initiated 
processes?

• How can isolation and sandboxing be enforced proactively, not 
reactively?

• What are principled semantics for pausing, checkpointing, 
migrating, and terminating agents?

• How should agents that spawn other agents be accounted for?
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• How can goals, preferences, and prohibitions be expressed 
declaratively?

• How do constraints remain binding as agents adapt strategies?
• How should conflicts between objectives be resolved and 

exposed?
• What is the boundary between agent discretion and system-

enforced control?
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• What does correctness mean when behavior evolves over 
time?

• How can safety envelopes or regret bounds replace binary 
correctness?

• How do we verify properties over extended reasoning-
action loops?

• How should failure be attributed across long decision 
sequences?
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• How can agent behavior be summarized intelligibly over time?
• When should agents escalate decisions to humans?
• How can limited human attention be allocated across many 

agents?
• How can systems support intervention without halting 

operation?



New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These CS research problems span systems, theory, 
HCI, etc.—and AI  
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Summary: Agentic middleware challenges

● Access & privileges
● Agent discovery
● Asynchronous communication
● Fault tolerance
● Interfaces
● Mobility
● Persistent stateful execution
● Provenance
● …

Federated Agents  | Pauloski et al., IEEE Computer
https://arxiv.org/pdf/2510.13081 
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Summary: Opportunities for TPC

• Define agentic workloads as a class
• Establish benchmarks beyond throughput
• Define interfaces for execution control
• Collaborate on open source software for scalable orchestration
• Share agent implementations
• Coordinate cross-site experiments
• Align model, systems, and facilities communities


