
Accelerating Discovery with Intelligent Agents
Ian Foster



https://epoch.ai/data/ai-benchmarking-dashboard 

Graduate-Level Google-Proof Q&A test (GPQA), Diamond problems

https://arxiv.org/pdf/2311.12022 

: 34%

: 81%

https://epoch.ai/data/ai-benchmarking-dashboard
https://epoch.ai/data/ai-benchmarking-dashboard
https://epoch.ai/data/ai-benchmarking-dashboard
https://epoch.ai/data/ai-benchmarking-dashboard
https://epoch.ai/data/ai-benchmarking-dashboard
https://arxiv.org/pdf/2311.12022


Humans engage FMs for many purposes, e.g.:
• Analyze knowledge
• Define & evaluate hypotheses 
• Define protocols to test
• Select data to use or request
• Choose tools (e.g., simulators, 

instruments, computers)
• Define actions (e.g., launch job, 

run query, trigger experiment)
• Evaluate outputs
• Propose next steps

FMs are general-purpose technologies

Human decision-making increasingly 
becomes the bottleneck



Let’s use a FM not 
just to “chat” but to 

drive actions

query

plan/
think

answer

tools

action

observation finish
AI agent 



An agent is a persistent, stateful process that acts 
on behalf of a user or system 

An agent may:
• Observe inputs or events [or user query]
• Plan (decide on) actions using a policy (rules or FM)
• Act: Execute tools or call other agents
• Learn: Update state to adapt over time

We can think of an agent as a [scientific] assistant that can reason, act, 
and coordinate on our behalf

query

plan/
think

answertools

action

observation
finish



An agentic architecture for the 
design of antimicrobial peptides
An antimicrobial peptide (AMP) is a short 
(typically 12 to 50 amino acid) molecule 
that can target and kill  viruses,  
bacteria, fungi, and other pathogens

Challenge: Design an AMP that can kill specified 
bacterial strains without harming host cells

With 20 possible amino 
acids, there are 
2020 = 1026 AMPs 
of length 20

Arvind 
Ramanathan



An agentic architecture for the 
design of antimicrobial peptides
An antimicrobial peptide (AMP) is a short 
(typically 12 to 50 amino acid) molecule 
that can target and kill  viruses,  
bacteria, fungi, and other pathogens

Challenge: Design an AMP that can kill specified 
bacterial strains without harming host cells

With 20 possible amino 
acids, there are 
2020 = 1026 AMPs 
of length 20

A rational design approach might combine knowledge of 
bacterial cell membrane composition and structure, AMP 
molecular and structural properties, host cell membrane 
characteristics and intracellular pathways—knowledge that may be 
gained by database/literature search, simulation, experiment

Arvind 
Ramanathan



Query PubMed for ChatGPT 
feedstock

Example: A peptide expert 
(Prototyped with PubMed and ChatGPT)

Retrieve abstracts A from PubMed that 
reference specified peptide 

Use ChatGPT to build hypotheses via 
retrieval-augmented generation: e.g.:
   “Given A, on which organism is {peptide} 
    acting?”

Evaluate hypotheses and update query and 
hypothesis generation policies 

Arvind Ramanathan, Priyanka Setty, et al.



Tool call

“Think”

Finish

Learn

Outline of a peptide 
agent implementation



Query PubMed for ChatGPT 
feedstock

Align proteins, predict 
structure, rank results

Evaluate structures and 
filter results

Define other agents, which may also be FM-powered

Arvind Ramanathan, Priyanka Setty, et al.



Input peptides
Query PubMed for 
ChatGPT feedstock

Align proteins, predict 
structure, rank results

Evaluate structures and 
filter results

Knowledge 
agent

Evaluation
agent

Structure 
agent

Link agents to construct an application

We use Academy to create and manage individual agents, which query 
databases, retrieve data, run simulations, run experiments, etc.

Arvind Ramanathan, Priyanka Setty, et al. https://academy-agents.org 

https://academy-agents.org/
https://academy-agents.org/
https://academy-agents.org/


Input peptides
Query PubMed for 
ChatGPT feedstock

Align proteins, predict 
structure, rank results

Evaluate structures and 
filter results

HPC 
agents

Computational 
evaluation

Link with HPC for computational evaluation

Knowledge 
agent

Evaluation
agent

Structure 
agent

Arvind Ramanathan, Priyanka Setty, et al.



Input peptides
Query PubMed for 
ChatGPT feedstock

Align proteins, predict 
structure, rank results

Evaluate structures and 
filter results

HPC 
agents

Computational 
& experimental 

evaluation

Link with self-driving labs for experimental evaluation

Experiment agentsKnowledge 
agent

Evaluation
agent

Structure 
agent

Arvind Ramanathan, Priyanka Setty, et al.



Knowledge 
agent

Evaluation
agent

Generate additional peptides ?

Input peptides
Query PubMed for 
ChatGPT feedstock

Align proteins, predict 
structure, rank results

Evaluate structures and 
filter results

Structure 
agent

HPC 
agents

Computational 
& experimental 

evaluation

Experiment agents

Close the loop for autonomous discovery

Arvind Ramanathan, Priyanka Setty, et al.



Agentic middleware: Scope and challenges

16

Low-level
challenges

High-level
challenges

Deployment

Protocols

LLM APIs

Multi-agent 
Conversations

LangChain, 
AutoGen, Pydantic 
AI, etc.

Academy

Tool CallingCross-domain 
execution

Fault 
Tolerance Data 

Movement

Scaling



Agent

Control

Actions

State

Handles

Client

Handle

Exchange (Data Plane)
Mailbox Mailbox Mailbox

Launcher(s) (Control Plane)

Exploring agentic middleware: Academy

Dr. Greg Pauloski

Dr. Kyle Chard

Handle

Control

Actions
Agent

State

Handles

Alok Kamatar

https://academy-agents.org 

https://academy-agents.org/
https://academy-agents.org/
https://academy-agents.org/


import asyncio
from academy.behavior import Behavior, action, loop

class Example(Behavior):
    def __init__(self) -> None:
        self.count = 0  # State stored as attributes

    @action
    async def square(self, value: float) -> float:
        return value**2

    @loop
    async def count(self, shutdown: asyncio.Event):
        while not shutdown.is_set():
            self.count += 1
            asyncio.sleep(1)

Agents defined 
by a behavior

Clients & other 
agents can 

request actions

Instance of a 
behavior is state

Control loops for 
autonomous 

behavior

https://docs.academy-agents.org/latest/get-started/

https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/


Use case: Metal organic framework (MOF) discovery

● A MOF is composed of organic molecules 
(ligands) and inorganic metals (nodes)

● Porous structures that can adsorb and store 
gases -- the sponges of materials science 

● Topologies can be optimized for targeted 
gas storage: e.g., Carbon Capture

Intractable search space of 
ligand, node, & geometry 

combinations

Goal: Efficient discovery of MOFs with 
desirable properties for target applications

19



MOFA code for metal-organic framework discovery, 
agentified with Academy

Federated Agents  |

AI Agent

Knowledge Agent

Computational 
Agents

Yan et al., “MOFA: Discovering materials for carbon capture with a GenAI- and simulation-
based workflow” (Under review; https://arxiv.org/abs/2501.10651)

Embodied 
Agents

https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651


Training
Dataset

Generator

Assembler EstimatorDatabase

Validator Optimizer

Chameleon
Cloud

CPUs Storage CPUs

Ligands

MOF
Candidates

Stable
MOFs

Optimized
MOFs

CO2
Capacities

Lattice
Strain

Legend

Agent

Resource

Data Flow

Agents executed remotely via Globus Compute
Data moved via Globus transfer

Authentication and authorization via Globus Auth

Agentified MOFA code easily maps to many resources



Benefits of agentic model:
➔ Placement: Move agents to 

resources
➔ Separation of concerns: 

Resource acquisition & scaling 
based on local workload

➔ Loose coupling: Swap agents, 
integrate new agents (e.g., SDL)

➔ Shared agents: Multiple 
workflows can share agents 
(microservice-like)

First batches of ligands

MOF buffer fills and Assembler scales down

Validator scales out to start processing MOFs 

Optimizer scales out after first validated MOFs

Estimate CO2 of optimized MOFs

Assembler and Estimator auto-scale

Batch job walltime expires

Agentified MOFA application execution trace 



AI progress is commonly framed around models
• Scale, parameters, benchmarks
• Models as stateless inference engines
• Execution assumed to be request–response

This framing is increasingly incomplete

Foundation 
model

Q A

Agency as a new organizing abstraction for computer science



From models to agents

Deployed systems increasingly:
• Persist over time
• Initiate actions autonomously
• Interact continuously with tools, APIs, people
• Accumulate state and context

These systems behave as agents

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent 
control 

loop

Foundation 
model

Environment 
APIs • Tools • Services • 
Agents • People • World

actions   effects   observations

Agent 



What makes a system “agentic”?

Agentic systems combine four properties

• Persistence: Long-lived state and context

• Autonomy: Decide when & how to act

• Goal-directedness: Pursue objectives 
over time

• Open environments: Act in settings that 
cannot be fully specified

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent 
control 

loop

Foundation 
model

Environment 
APIs • Tools • Services • 

People • World

actions   effects   observations

Agent 



None of these properties is new

Each of the following has a long history:

• Persistent processes — e.g., OS daemon

• Autonomous controllers — e.g., thermostat

• Goal-directed planners — e.g., classical planner

• Open-world interaction — e.g., network service

What is new is that all four exist simultaneously 
in a single computational entity,  enabled by 
foundation models

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent 
control 

loop

Foundation 
model

Environment 
APIs • Tools • Services • 

People • World

actions   effects   observations

Agent 



“Agents” are not just an application layer

Agentic systems reorganize computation
• Control flow moves to inside the system
• Responsibility shifts from caller to agent
• Time horizon expands beyond individual 

executions

This reorganization stresses foundational 
assumptions in computer science

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent 
control 

loop

Foundation 
model

Environment 
APIs • Tools • Services • 

People • World

actions   effects   observations

Agent 



Agency as a new organizing abstraction

Agency = Persistent, autonomous control loop 
embedded in an open environment

Core claim: Agency provides a unifying abstraction 
for reasoning about autonomous computational 
systems
• Explains recurring failures as abstraction 

mismatches
• Connects systems, PL, theory, and HCI (and AI)
• Moves discussion beyond ad hoc engineering fixes

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent 
control 

loop

Foundation 
model

Environment 
APIs • Tools • Services • 

People • World

actions   effects   observations

Agent 



Example failure: Autonomous resource consumption
• Scenario: An agent is deployed to monitor a 

cloud service and “improve reliability”
• Persistently observes metrics, logs, and alerts
• Authorized to provision resources & run diagnostics

• Upon performance anomaly, it autonomously:
• Spins up additional instances
• Runs large diagnostic queries
• Invokes paid external APIs

• Each action is locally reasonable, but costs end 
up excessive



Example failure: Autonomous resource consumption
Traditional per-invocation resource-limiting 
methods fail for self-initiated computation
• Agents decide when and how to act
• Can spawn processes and invoke paid APIs
• Traditional limits are reactive, not preventive

Assumption of externally invoked, episodic 
computation is invalid

Agentic systems require proactive constraint 
enforcement



Where current abstractions fall short

Recurring failure modes in deployed systems:
• Autonomous resource consumption
• Ambiguous agent lifecycles
• Distributed failure attribution
• Misplaced responsibility at system boundaries
• Opaque behavior under continuous operation

These failures are systematic, reflecting mismatches between existing 
abstractions and realities of agentic systems



Observed Failure Mode Abstraction Gap Resulting Research Challenges

Autonomous resource 
consumption and unbounded 
action initiation

Execution models assume externally 
invoked computation with reactive 
resource control

Proactive resource budgeting; 
anticipatory constraint enforcement; 
isolation for self-directed processes

Ambiguous agent lifecycles and 
costly termination

Process and service abstractions 
assume clear start, run, and 
termination phases

Lifecycle models for persistent agents; 
state preservation and transfer; 
principled shutdown semantics

Distributed failure attribution 
across long decision sequences

Debugging and verification assume 
localized faults and linear execution

Causal tracing across reasoning–action 
loops; partial-order explanations; long-
horizon accountability

Misplaced responsibility at 
system boundaries

Control and correctness are assumed to 
reside outside the computational 
component

New interface contracts; explicit 
responsibility assignment; end-to-end 
reasoning for autonomous initiators

Opaque behavior under 
continuous operation

Interaction models assume explicit user 
commands and episodic execution

Oversight interfaces; escalation 
policies; scalable human supervision

Recurring failure modes observed in agentic systems 



Observed Failure Mode Abstraction Gap Resulting Research Challenges

Autonomous resource 
consumption and unbounded 
action initiation

Execution models assume externally 
invoked computation with reactive 
resource control

Proactive resource budgeting; 
anticipatory constraint enforcement; 
isolation for self-directed processes

Ambiguous agent lifecycles and 
costly termination

Process and service abstractions 
assume clear start, run, and 
termination phases

Lifecycle models for persistent agents; 
state preservation and transfer; 
principled shutdown semantics

Distributed failure attribution 
across long decision sequences

Debugging and verification assume 
localized faults and linear execution

Causal tracing across reasoning–action 
loops; partial-order explanations; long-
horizon accountability

Misplaced responsibility at 
system boundaries

Control and correctness are assumed to 
reside outside the computational 
component

New interface contracts; explicit 
responsibility assignment; end-to-end 
reasoning for autonomous initiators

Opaque behavior under 
continuous operation

Interaction models assume explicit user 
commands and episodic execution

Oversight interfaces; escalation 
policies; scalable human supervision

Recurring failure modes observed in agentic systems 



Observed Failure Mode Abstraction Gap Resulting Research Challenges

Autonomous resource 
consumption and unbounded 
action initiation

Execution models assume externally 
invoked computation with reactive 
resource control

Proactive resource budgeting; 
anticipatory constraint enforcement; 
isolation for self-directed processes

Ambiguous agent lifecycles and 
costly termination

Process and service abstractions 
assume clear start, run, and 
termination phases

Lifecycle models for persistent agents; 
state preservation and transfer; 
principled shutdown semantics

Distributed failure attribution 
across long decision sequences

Debugging and verification assume 
localized faults and linear execution

Causal tracing across reasoning–action 
loops; partial-order explanations; long-
horizon accountability

Misplaced responsibility at 
system boundaries

Control and correctness are assumed to 
reside outside the computational 
component

New interface contracts; explicit 
responsibility assignment; end-to-end 
reasoning for autonomous initiators

Opaque behavior under 
continuous operation

Interaction models assume explicit user 
commands and episodic execution

Oversight interfaces; escalation 
policies; scalable human supervision

Recurring failure modes observed in agentic systems 



New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These are core CS research challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent 
control 

loop

Foundation 
model

Environment 
APIs • Tools • Services • 

People • World

actions   effects   observations

Agent 



New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These are core CS research challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent 
control 

loop

Foundation 
model

Environment 
APIs • Tools • Services • 

People • World

actions   effects   observations

Agent 



New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These are core CS research challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent 
control 

loop

Foundation 
model

Environment 
APIs • Tools • Services • 

People • World

actions   effects   observations

Agent 



New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These are core CS research challenges

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent 
control 

loop

Foundation 
model

Environment 
APIs • Tools • Services • 

People • World

actions   effects   observations

Agent 



New research problems

Beyond model capability and alignment
• Execution environments for persistent agents
• Programming models for constrained autonomy
• Correctness for adaptive, long-horizon behavior
• Oversight interfaces for continuous operation

These CS research problems span systems, theory, 
HCI, etc.—and AI  

Internal state
Goals/preferences
Memory/context
Policy/reasoning

Persistent 
control 

loop

Foundation 
model

Environment 
APIs • Tools • Services • 

People • World

actions   effects   observations

Agent 



Correctness under bounded rationality

Classical correctness assumes:
• Complete information
• Fixed objectives
• Known control flow
• Termination



Correctness under bounded rationality

Correctness in agentic systems must account for:
• Partial information and uncertainty
• Competing and evolving goals
• Long-horizon decision sequences
• Explicit resource and time limits

Thus: 
• Safety envelopes instead of absolute guarantees
• Regret or performance bounds instead of optimality
• Temporal properties instead of postconditions



Human oversight at scale

Classical assumptions:
• Humans issue commands
• Systems execute deterministically
• Oversight is synchronous and local

Agentic reality
• Agents act continuously
• Decisions are distributed over time
• Human attention is the scarce resource

Systems research question
How do we design systems where:
• Oversight is asynchronous, not 

interactive
• Intervention is exception-based, 

not continuous
• Accountability is aggregated 

over histories, not events



Summary:
Three perspectives on agentic AI 

1) A new approach to scientific discovery
• Performed by semi-autonomous agents directed by high-level goals

2) A new source of problems for computer systems research 
• Academy as an example and testbed; being used to tackle interesting 

problems in scalability, resilience, safety, …  

3) Agency as a new organizing abstraction for computer science
• An integrative concept, like networking and ML, that forces interactions 

across domains and exposes foundational abstraction gaps
• Agentic systems stress existing abstractions; agency provides a coherent way 

to understand why

https://academy-agents.org 

https://labs.globus.org 

https://academy-agents.org/
https://academy-agents.org/
https://academy-agents.org/
https://labs.globus.org/

