Accelerating Discovery with Intelligent Agents

f.d |HE UNIVERSITY OF

CHICAGO globus @& Argonne =1

Graduate-Level Google-Proof Q&A test (GPQA), Diamond problems

0.9}
Human PhD using Google in their field : 81%
0.8} ,
X
0.7}
X
> = X
0 0.6 (GPT-40 (2024-05-13)|
5 X X X
O
< 0.5 x
X
0.4} X (GPT-3.5 Turbo (2024-01-25)
L. — —Xx " X X St
d X . . . X
0.3} Human PhD using Google outside their specialty: 34% X
X X X
X
0'2 1 1 1 L L 1 1 Il L 1
A) N > < o A 8 N S
& o > o o3 o o > o Sl
> > P > > P P > > P

Release Date
https://arxiv.org/pdf/2311.12022 https://epoch.ai/data/ai-benchmarking-dashboard

https://epoch.ai/data/ai-benchmarking-dashboard
https://epoch.ai/data/ai-benchmarking-dashboard
https://epoch.ai/data/ai-benchmarking-dashboard
https://epoch.ai/data/ai-benchmarking-dashboard
https://epoch.ai/data/ai-benchmarking-dashboard
https://arxiv.org/pdf/2311.12022

.- .
§) & FMs are general-purpose technologies

Humans engage FMs for many purposes, e.g.:
* Analyze knowledge 20
* Define & evaluate hypotheses /

* Define protocols to test

h
) [

* Select data to use or request

2

* Choose tools (e.g., simulators,
instruments, computers)

\ —
* Define actions (e.g., launch job, 500
‘ ool

run query, trigger experiment)

000

o
0000

* Evaluate outputs Human decision-making increasingly
* Propose next steps becomes the bottleneck

N
Let’s use a FM not

just to “chat” but to

% drive actions)

answer

An agent is a persistent, stateful process that acts
on behalf of a user or system

An agent may:

* Observe inputs or events [or user query]

* Plan (decide on) actions using a policy (rules or FM)
* Act: Execute tools or call other agents
* Learn: Update state to adapt over time E s

tools

answer

We can think of an agent as a [scientific] assistant that can reason, act,
and coordinate on our behalf

Disrupt cell wall integrity
and cause pit formation

i

An agentic architecture for the
design of antimicrobial peptides o.,

Inhibit DNA replication
and transcription

synthesis

An antimicrobial peptide (AMP) is a short

(typically 12 to 50 amino acid) molecule @& .
that can target and kill viruses, Antimicrobial peptdes
bacteria, fungi, and other pathogens

Challenge: Design an AMP that can kill specified el

bacterial strains without harming host cells iohiit protein

Arvind
Ramanathan

With 20 possible amino #
acids, there are
2020 = 1026 AMPs
of length 20

Disrupt cell wall integrity
and cause pit formation

An agentic architecture for the A
design of antimicrobial peptides .mmm,— S abashiradets
g p p / \ _ e ,%‘% and transcription

synthesis

An antimicrobial peptide (AMP) is a short N4V o T
(typically 12 to 50 amino acid) molecule @& . Y '

that can target and kill viruses, Antimicrobiel peptdes .U
bacteria, fungi, and other pathogens m“ g

A P
Challenge: Design an AMP that can kill specified . (£ 3

Inhibit translation &&

bacterial strains without harming host cells Inhiit protein

folding

A rational design approach might combine knowledge of

. " Arvind
bacterial cell membrane composition and structure, AMP Ramanathan

molecular and structural properties, host cell membrane
characteristics and intracellular pathways—knowledge that may be
gained by database/literature search, simulation, experiment

Example: A peptide expert
(Prototyped with PubMed and ChatGPT)

Pub'«med . ChatGPT

_________________ 1

: Query PubMed for ChatGPT :
feedstock !

11
&

—~— -
-~ -
-~y -

-~ -
~— -

-~ -

-~ -

—y -

Arvind Ramanathan, Priyanka Setty, et al.

Retrieve abstracts A from PubMed that
reference specified peptide

Use ChatGPT to build hypotheses via
retrieval-augmented generation: e.g.:

“Given A, on which organism is {peptide}
acting?”

Evaluate hypotheses and update query and
hypothesis generation policies

Persistent agent state
Hypotheses = {} # hypothesis_id -> hypothesis object

Evidenceledger = {} # hypothesis_id -> list of evidence events

RetrievalPolicy = {} # learned biases over queries/sources
AgentConfig = {

"confidence_threshold": 0.8,

"retirement_threshold": -0.5
}

while True:

1. Select target peptide
peptide = select_peptide(Hypotheses) TOOI Ca”

2. Retrieve new evidence
query = build_pubmed_query(peptide, RetrievalPolicy)
abstracts = retrieve_abstracts(query)

3. Generate new hypotheses (if needed)
if not has_active_hypothesis(peptide, Hypotheses):

new_hypotheses = generate_hypotheses(
abstracts,
prompt = (
"Given abstracts A, on which organism is "
f"{peptide} acting?"
)

)

for H 1n new_hypotheses:
Hypotheses[H.id] = H
EvidencelLedger[H.id] = []

4. Evaluate hypotheses against new evidence
for H in active_hypotheses(peptide, Hypotheses):

assessment = evaluate_hypothesis(H, abstracts)
assessment € {supports, contradicts, inconclusive}
with confidence score

EvidencelLedger[H.id].append({
"abstracts": abstracts,
"assessment": assessment.type,
"strength": assessment.strength,
"timestamp": now()

1)

5. Update hypothesis confidence
H.confidence = update_confidence(
H.confidence,
assessment

“Think”

Learn

Finish

Outline of a peptide

agent implementation

6. Prune or retire hypotheses
for H in Hypotheses.values():

if H.confidence < AgentConfig["retirement_threshold"]:

retire_hypothesis(H)

7. Adapt retrieval policy
RetrievalPolicy = update_retrieval_policy(
RetrievalPolicy,
Evidenceledger
)

8. Self-reflection and gap analysis (periodic)
if time_for_reflection():
gaps = identify_knowledge_gaps(Hypotheses)
RetrievalPolicy = bias_toward_gaps(
RetrievalPolicy,
gaps
)

9. Optional human-in-the-loop
if uncertainty_high(Hypotheses):
request_human_feedback(Hypotheses)

10. Termination or sleep
if stopping_condition_met(Hypotheses):
break

TISe,
sleep()

Define other agents, which may also be FM-powered

Publiled (&) crarcer (RS I wo-Bv:BRC NCBI

l Query PubMed for ChatGPT | Align proteins, predict Evaluate structures and
feedstock structure, rank results filter results

o\

Arvind Ramanathan, Priyanka Setty, et al.

-_—a e e e e e e o=

Link agents to construct an application

Query PubMed for | Align proteins, predict | Evaluate structures and '
ChatGPT feedstock | structure, rank results filter results '

BB A

Knowledge Structure Evaluation
agent agent agent

We use Academy to create and manage individual agents, which query
databases, retrieve data, run simulations, run experiments, etc.

Arvind Ramanathan, Priyanka Setty, et al. https://academy-agents.org

https://academy-agents.org/
https://academy-agents.org/
https://academy-agents.org/

Link with HPC for computational evaluation

Query PubMed for Align proteins, predict |
ChatGPT feedstock structure, rank results §

, \ /-\ /-\ E Computational

.

Evaluate structures and @ | g3
filter results '

CEEEE—— g@} CEEE—— g@} C— @}\ evaluation

Knowledge Structure Evaluation
agent agent agent

Arvind Ramanathan, Priyanka Setty, et al.

Link with self-driving labs for experimental evaluation

Input peptides Publifed . chatcPT |FEEREHST #BV-BRC NCBI
P Zilié'r}/'ﬁbBMéHfdf""T"Zil}:dh'iir'é%é'frié'b'rédi&'t """ Evaluate structures and |
ChatGPT feedstock structure, rank results filter results |

/-\ /-\ /-\ Computational
—— g@} o——— g@} CI——— @}\ % & experimental
\ / \ / \ / evaluation

. L0\
Knowledge Structure Evaluation Experlment agents 2
agent agent agent : |

Arvind Ramanathan, Priyanka Setty, et al.

Close the loop for autonomous discovery

Input peptides Publifed . chatcPT |FEEREHST #BV-BRC NCBI
P Zilié'r}/'ﬁbBMéHfdf""T"Zil}:dh'iir'é%é'frié'b'rédi&'t """ Evaluate structures and ' |
ChatGPT feedstock structure, rank results filter results |

Computational
@} ————— @} & experimental
\ , \ , evaluation
/\

Knowledge Structure Evaluation

Experlment agents \/

Generate additional peptides ‘ ,
Arvind Ramanathan, Priyanka Setty, et al.

Agentic middleware: Scope and challenges

Fault Scaling _
Tolerance Data Protocols Mult|-ag(?:nt
Conversations
Movement C g :
Deployment 1055°00MaN 1401 Calling LLM APIs
B execution
Low-level High-level
challenges challenges
LangChain,
Academy ——> <+— AutoGen, Pydantic
Al, etc.

16

Exploring agentic middleware: Academy

Exchange (Data Plane)

LS Mailbox - &2 Mailbox 52 Mailbox -
l | |
Cller]\t @ Ager[t Ager[t
S0 Actions 5O Actions
9 Handle () control T (, Control
& Handle —— 8 Handles —— (& Handles

2 state 2 state

Launcher(s) (Control Plane)

Alok Kamatar

https://academy-agents.org

https://academy-agents.org/
https://academy-agents.org/
https://academy-agents.org/

Agents defined
by a behavior

Clients & other
agentscan ——
request actions

import asyncio
from academy.behavior import Behavior, action, loop
\
class Example(Behavior):
def init (self) -> None:
self.count = @

|__—» @action
async def square(self, value: float) -> float:
return value**2

@loop
async def count(self, shutdown: asyncio.Event):
while not shutdown.is_set(): —

Instance of a
behavior is state

Control loops for

self.count += 1
asyncio.sleep(1)

https://docs.academy-agents.org/latest/get-started/

autonomous
behavior

https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/
https://docs.academy-agents.org/latest/get-started/

Use case: Metal organic framework (MOF) discovery

« A MOF is composed of organic molecules
(ligands) and inorganic metals (nodes)

e Porous structures that can adsorb and store
gases -- the sponges of materials science

« Topologies can be optimized for targeted
gas storage: e.g., Carbon Capture

Goal: Efficient discovery of MOFs with
desirable properties for target applications

19

Intractable search space of
ligand, node, & geometry
combinations

MOFA code for metal-organic framework discovery,

agentified with Acac

Al Agent

Yanetal., “

e

(Re-)Train

<&

\ wime (|HEY .. . P
Adsorption Optimize Cells |

b

MofLinker |

\ 4

A

< Validate
| Database I‘ Structure
Knowledge Agent " Giete

Generate } ’ Process L e ’ Assemble
Linkers Linkers L _Q_u_e e,

MOFs
KRE K it

based workflow” (Under review; https://arxiv.org/abs/2501.10651)

Computational
Agents

MOFA: Discovering materials for carbon capture with a GenAl- and simulation-

https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651

Agentified MOFA code easily maps to many resources

— Resource

— Data Flow

Agents executed remotely via Globus Compute
Data moved via Globus transfer
Authentication and authorization via Globus Auth

Agentified MOFA application execution trace

Esti IMILES’Icimate CO, of optimized MOFs E“ ——
it [ormereeasemwaevor | BeNEfits of agentic model:
Validator =| Validator scales out to start processing MOFs I - Placement: Move agents to
N =| MOF buffer fills and Assembler scales down FiF—m] resources
Assembler % ! ! i i
Generator E First batches of ligands Te————i——e .
- Separatlon of concerns:
% 200 4 Generator Lo .
2 == Assembler Resource aCQU|S|t|0n & Scallng
5 50 1 —— Vvalidator
£ 100 { ——- Optimizer based on local workload
_g 50 --=- Estimator .
3 o — P i - Loose coupling: Swap agents,
. | integrate new agents (e.g., SDL)
g 2|A Batch job walltime expires > Shared agents: Mu|t|p|e
£ 10 workflows can share agents
= | I 1 i (microservice-like)
0 / 2000 4000 6000 8000 10000
Assembler and Estimator auto-scale | Runtime (s)

Agency as a new organizing abstraction for computer science

Al progress is commonly framed around models
* Scale, parameters, benchmarks

* Models as stateless inference engines 2

* Execution assumed to be request—-response

al 1A

This framing is increasingly incomplete model

From models to agents

Deployed systems increasingly:

* Persist over time

* Initiate actions autonomously

* Interact continuously with tools, APls, people
* Accumulate state and context

These systems behave as agents

S
BN

b

N
_/
Persistent

control
loop

Agent

Internal state
Goals/preferences
Memory/context
Policy/reasoning

y

Foundation

model

actions | effects |observations

Environment

APIs ¢ Tools e Services e
Agents e People World

What makes a system “agentic”?

/ Agent
Internal state
O t tat

Goals/preferences

Agentic systems combine four properties

* Persistence: Long-lived state and context

Persistent

* Autonomy: Decide when & how to act contral |,

loop Policy/reasoning

* Goal-directedness: Pursue objectives

over time \ (‘ WJ

* Open environments: Act in settings that L J
cannot be fully specified

S

None of these properties is new (R

Each of the following has a long history: / Agent \

* Persistent processes — e.g., OS daemon O '“tem/a' state
Goals/preferences

* Autonomous controllers — e.g., thermostat Pigsr';trift Memory/context

* Goal-directed planners — e.qg., classical planner loop POI'Cy/ieasonmg

* Open-world interaction — e.qg., network service Foundation

model

actions | effects |observations

What is new is that all four exist simultaneously

in a single computational entity, enabled by Environment
foundation models APls ¢ Tools ® Services e
People e World

“Agents” are not just an application layer

Agentic systems reorganize computation
* Control flow moves to inside the system
* Responsibility shifts from caller to agent

* Time horizon expands beyond individual
executions

This reorganization stresses foundational
assumptions in computer science

S
BN

I

e
@

control
loop

action

Persistent

Agent

Internal state

Goals/preferences
Memory/context
Policy/reasoning

!
Foundation
model

s | effects |observations

APlIs

Environment

* Tools ® Services e
People e World

9,
Agency as a new organizing abstraction o

b

Agency = Persistent, autonomous control loop a Agent I
embedded in an open environment

f\ Internal state
_/

Goals/preferences
Persistent

Core claim: Agency provides a unifying abstraction | _ . | | Memory/context
for reasoning about autonomous computational loop P°"Cy/£eaS°”'”g
systems

Foundation

* Explains recurring failures as abstraction

_ model
mismatches

actions | effects |observations

* Connects systems, PL, theory, and HCI (and Al) _
Environment

APIs ¢ Tools ® Services
People e World

* Moves discussion beyond ad hoc engineering fixes

Example failure: Autonomous resource consumption

* Scenario: An agent is deployed to monitor a
cloud service and “improve reliability”

* Persistently observes metrics, logs, and alerts
* Authorized to provision resources & run diagnostics

* Upon performance anomaly, it autonomously:
* Spins up additional instances

* Runs large diagnostic queries
* Invokes paid external APIs

e Each action is locally reasonable, but costs end
up excessive

Example failure: Autonomous resource consumption

Traditional per-invocation resource-limiting 28 T
methods fail for self-initiated computation = . S

* Agents decide when and how to act S A quoTa [S
o 58 EXCEEDED y

* Can spawn processes and invoke paid APIs
* Traditional limits are reactive, not preventive

Assumption of externally invoked, episodic
computation is invalid

Agentic systems require proactive constraint
enforcement

Where current abstractions fall short

Recurring failure modes in deployed systems:
e Autonomous resource consumption
 Ambiguous agent lifecycles

* Distributed failure attribution

* Misplaced responsibility at system boundaries

* Opaque behavior under continuous operation

These failures are systematic, reflecting mismatches between existing
abstractions and realities of agentic systems

Recurring failure modes observed in agentic systems

Observed Failure Mode

Autonomous resource
consumption and unbounded
action initiation

Ambiguous agent lifecycles and
costly termination

Distributed failure attribution
across long decision sequences

Misplaced responsibility at
system boundaries

Opaque behavior under
continuous operation

Recurring failure modes observed in agentic systems

Observed Failure Mode Abstraction Gap

Autonomous resource Execution models assume externally
consumption and unbounded invoked computation with reactive
action initiation resource control

Process and service abstractions
assume clear start, run, and
termination phases

Ambiguous agent lifecycles and
costly termination

Distributed failure attribution Debugging and verification assume
across long decision sequences |localized faults and linear execution

Control and correctness are assumed to
reside outside the computational
component

Misplaced responsibility at
system boundaries

Opaque behavior under Interaction models assume explicit user
continuous operation commands and episodic execution

Recurring failure modes observed in agentic systems

Observed Failure Mode

Abstraction Gap

Resulting Research Challenges

Autonomous resource
consumption and unbounded
action initiation

Execution models assume externally
invoked computation with reactive
resource control

Proactive resource budgeting;
anticipatory constraint enforcement;
isolation for self-directed processes

Ambiguous agent lifecycles and
costly termination

Process and service abstractions
assume clear start, run, and
termination phases

Lifecycle models for persistent agents;
state preservation and transfer;
principled shutdown semantics

Distributed failure attribution
across long decision sequences

Debugging and verification assume
localized faults and linear execution

Causal tracing across reasoning—action
loops; partial-order explanations; long-
horizon accountability

Misplaced responsibility at
system boundaries

Control and correctness are assumed to
reside outside the computational

component

New interface contracts; explicit
responsibility assignment; end-to-end
reasoning for autonomous initiators

Opaque behavior under
continuous operation

Interaction models assume explicit user
commands and episodic execution

Oversight interfaces; escalation
policies; scalable human supervision

9,
New research problems)

Beyond model capability and alighment (Agent \

* Execution environments for persistent agents/\/>

Internal state

"
"/ Goals/preferences

Persistent
Memory/context
control

loop Policy/reasoning

!
Foundation
model

actions | effects |observations

Environment

APIs ¢ Tools ® Services
People e World

S

New research problems T—?
Beyond model capability and alignment a Agent
* Execution environments for persistent agents /N | Internal state
[i Goal f
e Programming models for constrained autonomy = |perseent Moa s/preferences
control emory/context
loop Policy/reasoning
4

Foundation

model

actions | effects |observations

Environment

APIs ¢ Tools ® Services e
People e World

9,
New research problems)

Beyond model capability and alignment Agent \

* Execution environments for persistent agents ("~ | Internal state
'\/ Goals/preferences

* Programming models for constrained autonomy Persistent
p—— Memory/context

* Correctness for adaptive, long-horizon behavior A~ oo, | Policy/reasoning
y

Foundation

model

actions | effects |observations

Environment

APIs ¢ Tools ® Services
People e World

New research problems T’?
Beyond model capability and alignment / Agent \

* Execution environments for persistent agents Internal state

Goals/preferences
ersistent

control

* Correctness for adaptive, long-horizon behavior, oop | Policy/reasoning

* Oversight interfaces for continuous operation !
Foundation

. : :
Programming models for constrained autonomy Mermory/context

model

actions | effects |observations

Environment

APIs ¢ Tools ® Services
People e World

S

New research problems rl“F
Beyond model capability and alighment a Agent
* Execution environments for persistent agents G Internal state
: : Goals/pref

* Programming models for constrained autonomy Persistent Moa b

. . . B emory/context
* Correctness for adaptive, long-horizon behavior loop | Policy/reasoning
* Oversight interfaces for continuous operation !

Foundation

model

actions | effects |observations

These CS research problems span systems, theory,

HCI, etc.—and Al Environment

APIs ¢ Tools ® Services
People e World

Correctness under bounded rationality

Classical correctness assumes:
* Complete information

* Fixed objectives

e Known control flow

* Termination

Correctness under bounded rationality

Correctness in agentic systems must account for:
* Partial information and uncertainty

* Competing and evolving goals

* Long-horizon decision sequences

* Explicit resource and time limits

Thus:
» Safety envelopes instead of absolute guarantees

* Regret or performance bounds instead of optimality
* Temporal properties instead of postconditions

Human oversight at scale

Classical assumptions:
* Humans issue commands
 Systems execute deterministically

* Oversight is synchronous and local

Agentic reality

e Agents act continuously

* Decisions are distributed over time

* Human attention is the scarce resource

Systems research question

How do we design systems where:

Oversight is asynchronous, not
interactive

Intervention is exception-based,
not continuous

Accountability is aggregated
over histories, not events

globus @9 labs

Summary: https://labs.globus.org

Three perspectives on agentic Al

1) A new approach to scientific discovery
* Performed by semi-autonomous agents directed by high-level goals

2) A new source of problems for computer systems research
* Academy as an example and testbed; being used to tackle interesting
problems in scalability, resilience, safety, ... https://academy-agents.org

3) Agency as a new organizing abstraction for computer science

* An integrative concept, like networking and ML, that forces interactions
across domains and exposes foundational abstraction gaps

* Agentic systems stress existing abstractions; agency provides a coherent way
to understand why

https://academy-agents.org/
https://academy-agents.org/
https://academy-agents.org/
https://labs.globus.org/

