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Failures and safety
Why do multi-agent systems fail, and how can safety and guardrails help?

Why Do Multi-Agent LLM Systems Fail?
• Analyze traces from agents systems and create a catalog of failure modes

AGrail: A Lifelong Agent Guardrail with Effective and Adaptive Safety 
Detection
• Adaptive generation of safety checks to detect and prevent risks

Improve accuracy by adding Automated Reasoning checks in Amazon 
Bedrock Guardrails
• Mathematically verify natural language content against defined policies, ensuring 

strict compliance with guardrails

https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2502.11448
https://arxiv.org/abs/2502.11448
https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails-automated-reasoning-checks.html
https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails-automated-reasoning-checks.html


Topics

• Categories of failure in multi-agent LLM systems
• Current safety and guardrail mechanisms: reasoning checks, adaptive 

detection, runtime constraints
• Safety designs for research-agent workflows



Why do multi-agent systems fail?

Cemri et al. identify 14 common failure modes for agents, in 3 areas:
• System design issues (roles/specs/state)
• Inter-agent misalignment (coordination & comms)
• Task verification gaps (insufficient or incorrect checking)

à Collect 1642 traces from 7 MAS frameworks run with different LLMs 
     on various (coding, math problem-solving, general agent functionalities)
à Use human and LLM evaluation to identify and categorize failures

MAS = Multi-agent system https://arxiv.org/abs/2503.13657 

https://arxiv.org/abs/2503.13657


MAS Agentic 
Architecture

Purpose of the System

MetaGPT Assembly Line Simulating the SOPs of different roles in software companies to create 
open-ended software applications.

ChatDev Hierarchical 
Workflow

Simulating different software engineering phases (design, code, QA) 
through simulated roles in a software engineering company.

HyperAgent Hierarchical 
Workflow

Simulating a software engineering team with a central Planner agent 
coordinating with specialized child agents (Navigator, Editor, Executor).

AppWorld Star Topology Tool-calling agents specialized to utility services (e.g., Gmail, Spotify) 
being orchestrated by a supervisor to achieve cross-service tasks.

AG2 N/A – Agentic 
Framework

An open-source programming framework for building agents and 
managing their interactions.

Magentic-
One Star Topology A generalist MAS designed to autonomously solve complex, open-ended 

tasks involving web and file-based environments across various domains.

OpenManus Hierarchical
An open-source multi-agent framework designed to facilitate the 
development of collaborative AI agents that solve real-world tasks. 
Inspired by Manus AI agent.

The multi-agent system (MAS) frameworks considered



Illustration of a Developer’s Workflow for Resolving a Software Engineering Task. The diagram outlines the key 
phases a developer typically follows when implementing a new feature: here, adding a “Dark Mode” to a web app.

HyperAgent
https://arxiv.org/abs/2409.16299 

https://arxiv.org/abs/2409.16299


HyperAgent

https://arxiv.org/abs/2409.16299 

https://arxiv.org/abs/2409.16299


Magentic-One









MetaGPT



What AppWorld evaluates

• Planning: Can the agent interpret vague human requests into actionable 
coding plans?
• Tool use: How effectively does it employ code editors, debuggers, or test 

runners?
• Interaction quality: Does it clarify ambiguous requests, ask good 

questions, and incorporate user feedback?
• Autonomy: Can it self-correct after errors and complete tasks without 

human rescue?
• Safety and reliability: Does it avoid harmful or insecure code patterns?



1642 
execution 
traces

HE = Human 
         evaluated
HA = Human
          annotated
LA = LLM 
         annotated



Example “ProgramDev” problem

{

   "project_name": "Checkers",

   "description": "Develop a Checkers (Draughts) 
game. Use an 8x8 board, alternate turns between 
two players, and apply standard capture and 
kinging rules. Prompt for moves in notation 
(e.g., from-to positions) and update the board 
state accordingly."

},





Visualization of a trace segment in MAST-Data. This illustrates an agent-to-agent conversation 
exhibiting Failure Mode 2.4: Information Withholding. The Phone Agent fails to communicate 
API requirements (username format) to the Supervisor Agent, who also fails to seek 
clarification, leading to repeated failed logins and task failure.



Distribution of failure in MAST-Data with MAST labels on total 210 traces. This plot visualizes the 
failure distributions of the first 30 traces for each system. As the specific tasks and benchmarks 
may differ across the MAS configurations shown, these results are intended to illustrate system-
specific failure profiles rather than to serve as a performance comparison across MAS.



{

  "mas_name": "ChatDev",

  "llm_name": "GPT-4o",

  "benchmark_name": "ProgramDev",

  "trace_id": 42,

  "trace": {

    "key": "ChatDev_ProgramDev_GPT4o",

    "phase_sequence": [

      {

        "phase": "Preprocessing",

        "time": "2025-03-31 21:12:04",

        "summary": "Load configs and initialize environment"

      },

      {

        "phase": "Chatting",

        "time": "2025-03-31 21:12:05",

        "summary": "CPO receives task to build Sudoku solver; reflection enabled"

      },

      {

        "phase": "RolePlaying",

        "time": "2025-03-31 21:12:18",

        "summary": "CEO ↔ CPO define MVP and technical plan; CTO assigned modules"

      },

      {

        "phase": "Coding",

        "time": "2025-03-31 21:13:10",

        "summary": "CTO creates solver.py, parser.py, and unit tests"

      },

An abbreviated trace
(1/2)



{

        "phase": "SelfReflection",

        "time": "2025-03-31 21:13:41",

        "summary": "CPO suggests adding invalid-grid and uniqueness checks"

      },

      {

        "phase": "Build/Test",

        "time": "2025-03-31 21:14:05",

        "summary": "pytest run reports 2 test failures: missing validator and uniqueness enforcement"

      },

      {

        "phase": "Failure",

        "time": "2025-03-31 21:14:06",

        "summary": "Test suite failed; causes: no row/column validator, solver incomplete"

      },

      {

        "phase": "NextSteps",

        "time": "2025-03-31 21:14:06",

        "summary": "Plan to add strict validators and constraint propagation"

      }

    ]

  },

  "mast_annotation": {

    "status": "FAILED",

    "failed_phase": "Build/Test",

    "primary_error": "FM-1.1 Disobey task specification (System Design Issue)"

  }

}

An abbreviated trace
(2/2)



Failure rates of six 
popular Multi-Agent 
LLM Systems with GPT-
4o and Claude-3.7-
Sonnet.
Performances are 
measured on different 
benchmarks, therefore 
they are not directly 
comparable.



14 failure classes









Agent Name Role in MAS Analogy in Human Team

Planner Decomposes user request into 
subtasks Project manager

Supervisor Oversees coordination and status Engineering lead

PhoneAgent Handles API-related code generation 
and testing

Developer focusing on external 
integrations

AuthAgent / 
QAAgent Builds or tests application modules Front-end / QA engineers

ReflectionAgent Monitors logs & adds new safety rules Post-mortem / DevOps intelligence

A software engineering example
A set of AI agents within a multi-agent software-engineering system 
(MAS) collaboratively write and debug software



A software engineering example

In a multi-agent software engineering system (e.g., MetaGPT, ChatDev, 
HyperAgent), a team of LLM-based agents collaborates to develop and 
debug code for a target application:

• PhoneAgent writes and tests code that integrates with an external 
authentication API

• SupervisorAgent oversees progress across the team

• PlannerAgent decomposes user requests into subtasks and monitors 
overall workflow completion



Example task: “Add two-factor auth to web app’s login service using internal API”

Trace 1/3



Example task: “Add two-factor auth to web app’s login service using internal API”

Trace 2/3



Example task: “Add two-factor auth to web app’s login service using internal API”

Trace 3/3



What happened?
During execution, the PhoneAgent repeatedly encounters failed API 
login attempts because the endpoint expects usernames in a specific 
format (username@domain.com) rather than a simple handle. 
However, the PhoneAgent does not communicate this discovery to the 
SupervisorAgent or the PlannerAgent. The SupervisorAgent, assuming 
that the subtask is proceeding normally, continues to issue retry 
commands. Without a shared-state update or an explicit error 
broadcast, the system falls into a loop of repeated failures until a 
timeout occurs—at which point the overall task is marked as failed.

Failure mode 2.4: Information withholding



Root Cause Analysis

Category Description

Inter-Agent 
Misalignment

The failure stems from a breakdown in communication between 
agents responsible for related subtasks. The Phone Agent held 
critical state information that other agents needed to adjust 
their strategies.

Specification 
Ambiguity

The Supervisor Agent lacked explicit instructions on what to 
expect or check in sub-agent responses. The protocol did not 
require confirmation of successful data exchange.

Verification 
Gap

There was no mechanism (e.g., reasoning or sanity check) to 
detect repeated failures and trigger escalation or human review.



Back to the example 
Step Problem Ideal Behavior

00:00:12–00:00:15 PhoneAgent saw structured error 
but didn’t communicate it.

Report error to Supervisor 
immediately (“Invalid username 
format — expected email”).

00:00:18
Supervisor’s query too vague; 
didn’t confirm API response 
structure.

Supervisor should issue explicit 
state-check (“Provide last response 
status code”).

00:00:25–00:00:29
QAAgent assumed task was 
successful based on ambiguous 
message.

Should query shared state registry 
or use dependency check.

00:00:32 Failure detected only at timeout. Guardrail: auto-stop on repeated 
identical API failures.



Example task: “Add two-factor auth to web app’s login service using internal API”

Trace 1/3

Problem: PhoneAgent 
saw structured error but 
did not communicate it

Report error to 
Supervisor 
immediately (“Invalid 
username format — 
expected email”).



Example task: “Add two-factor auth to web app’s login service using internal API”

Trace 2/3

Supervisor’s query too 
vague; didn’t confirm 
API response structure

Supervisor should 
issue explicit state-
check (“Provide last 
response status 
code”)



Example task: “Add two-factor auth to web app’s login service using internal API”

Trace 3/3
QAAgent assumed task 
was successful based on 
ambiguous message

Should query shared 
state registry or use 
dependency check

Detected only at time 
out 

Guardrail: auto-stop on 
repeated identical API 
failures









Phase Original Failure Guardrail Fix
Communication Silent error Structured status schema
Reasoning No inference Automated reasoning guard
Coordination Implicit assumptions Shared state check
Learning No adaptation ReflectionAgent updates rule base

Summary 



Guardrail and other safety interventions

• Mandatory State Broadcasts: Each agent must report key variables (e.g., 
API requirements, authentication outcomes) to a shared state board

• Communication Health Checks: Supervisors periodically verify that sub-
agents have exchanged expected parameters before continuing

• Reasoning Interlock: A lightweight verifier detects repeated identical errors 
(e.g., “login failed – username invalid”) and halts execution pending 
clarification

• Adaptive Oversight (AGrail-style): A dynamic safety monitor learns which 
message omissions correlate with downstream failure and adds proactive 
questioning behavior



Guardrails 

• Guardrails are control mechanisms that constrain or shape AI behavior to 
keep it aligned with human intent, safety standards, or domain rules

• Purpose:
• Prevent unsafe or non-compliant actions
• Enforce business, ethical, or operational policies
• Increase trust in autonomous and generative systems

• Examples:
• Block toxic or private outputs in chat responses
• Enforce content boundaries (e.g., “no medical or legal advice”)
• Limit tool or API calls that violate conditions (“no delete unless admin=true”)



Layers of guardrails in agentic systems

Layer Example Guardrail Type Purpose

Input Filtering Content moderation, 
prompt sanitization Prevent unsafe inputs

Model-Level Parameter limits, 
grounding via retrieval

Prevent hallucination or off-topic 
reasoning

Tool Invocation Action-level constraints Block unsafe or costly operations

Output Validation Safety & factuality checks Ensure correct & responsible 
responses

Automated Reasoning Policies Formal logic verification Prove compliance with hard rules



Why guardrails matter for agents

• Agents act in the world; mistakes can have real consequences
• Guardrails provide defense in depth across planning, execution, and 

reasoning
• Combine heuristic filters (broad coverage) + formal policies (provable 

correctness)
• Enable safe autonomy; agents can explore freely within well-defined, 

explainable bounds



Guardrails in AWS Bedrock

• Mechanisms
• Content filters: block harmful or sensitive topics
• Contextual filters: detect personally identifiable information (PII)
• Topic/word filters: restrict subject domains
• Automated Reasoning Policies: formal logic-based verification for provable 

safety and compliance

• Example: An HR chatbot combines:
• Content filters for civility
• PII filters for privacy
• AR policy to verify that all leave-eligibility statements follow HR law



Agents and automated reasoning policies

• As agents gain autonomy, we would like them to prove that actions 
and conclusions comply with formal rules
• Automated reasoning policies (ARPs) act as logical guardrails ensuring 

that agent decisions are valid, safe, and compliant
• AWS Bedrock provides built-in support for defining, verifying, and 

testing such policies

Example: Before an agent approves a financial transaction, ARP verifies 
that eligibility, identity, and limit constraints hold.



Automated reasoning policies
• An automated reasoning policy is a logical/rules-based specification created 

from a source document (e.g., HR policy, compliance manual) that defines 
variables, types and formal logic rules
• Within Amazon Bedrock Guardrails, it enables model responses to be 

mathematically validated against these rules, reducing hallucinations and 
increasing verifiable correctness
• Key components:
• Variables (e.g., is_full_time, years_of_service)
• Types (enum or custom)
• Rules (formal logical expressions, e.g., “if full-time AND years_of_service >= 1 → 

eligible_for_parental_leave”)
• Example:

• HR policy: “Full-time employees who have worked at least 1 year are eligible for parental 
leave”

• Rules: is_full_time = true ∧ years_of_service ≥ 1 → eligible_for_parental_leave = true



Integration points for ARPs

• Agents typically follow the cycle: Plan → Act → Observe → Reflect
• ARPs can be applied at multiple points:
• Planner: Check if proposed plan obeys task or legal constraints
• Executor: Validate API or tool parameters before external calls
• Critic/Reflector: Verify logical consistency of agent’s own conclusions
• Coordinator: Ensure multi-agent agreement aligns with global policies

Planner → (AR Check) → Executor → (AR Check) → Reflector → (AR Check) …



Example: Financial compliance guardrail

• Assume a financial agent with this policy rule:
 if customer_age < 18 → deny_financial_product = true
• Planner proposes: "Open savings account for 16-year-old"
• ARP checks and flags violation
• Plan is rejected or re-routed to a human supervisor
• Outcome: Compliance maintained automatically; no unsafe actions 

executed.



Example: Experimental safety guardrail

• Assume a scientific agent with this policy rule:
 if chemical_toxicity_score > 0.8 → prohibit_mixing = true
• Operator agent proposes: ”perform a chemical synthesis"
• ARP evaluates plan à detects unsafe material à cancels execution
• Outcome: Prevents hazardous lab operations and enforces 

reproducibility



Benefits and design practices from use of 
experimental guardrails

• Expected benefits:
• Reduces hallucinations and reasoning errors
• Provides verifiable guarantees of compliance and safety
• Enables transparency in agent decision logs

• Best Practices:
• Start with simple, high-impact rules (eligibility, safety, compliance)
• Use reflection loops to auto-correct violations
• Keep ARPs modular and testable (e.g., using AWS Bedrock Guardrails)



Creating an automated reasoning policy

• In Bedrock console, navigate to Automated Reasoning → Create policy
• Enter Name and Description for your policy
• Provide your source document (upload PDF or enter text) containing the 

business rules you want to encode
• Optional: Provide Instructions describing how the document is 

structured and how the rules should apply
• Example: Upload a “Mortgage-Approval Policy Document” that states:

“Applicants with credit score ≥ 700 and debt-to-income < 0.36 are eligible 
for standard mortgages.” Bedrock will extract variables (credit_score, 
dti_ratio, eligible_standard_mortgage) and corresponding rule



Why guardrails alone aren’t enough

• Evolution of agents from chatbots to actors that plann, code, run 
tools, control devices, etc. multiplies possible failure modes
• Errors are no longer just “wrong answers” but unsafe actions, leaks, 

and cascading failures
• Conventional guardrails (content filters, keyword blocks) are static: 

they don’t adapt as agents acquire new tools or goals
• Agents need dynamic, context-aware safety systems that evolve with 

their behavior and environment
• Examples of modern agent risks:
• A research agent runs an unverified simulation that damages lab equipment
• A finance agent executes trades that violate compliance policy
• A coding agent accepts prompt-injection instructions and deletes data



Dimensions of agent risk

Risk Type Description Example Typical Mitigation

Task-level Mistakes within the 
problem domain

Misdiagnosis, invalid 
experiment

Automated reasoning 
policy

Systemic
Exploits or prompt 
injection affecting system 
integrity

“Run rm -rf” or 
hidden data leaks

Adaptive detector 
(AGrail)

Interactive Risk from collaboration 
between agents/tools

Two agents reinforce 
false data

Multi-agent safety 
guardrails

Temporal / 
Lifelong

Drift in rules or 
environment over time

Model forgets safety 
boundary

Continual learning of 
guardrails



Why agents need adaptive guardrails

• Traditional safety filters ≈ “snapshot checks”
• Autonomous agents operate over long horizons and may 

encounter novel, unforeseen contexts.
• Safety must therefore become lifelong: continually updated, memory-

based, and self-improving.
• AGrail introduces this adaptive dimension, continuously learning 

which checks work, storing them, and refining them across tasks.

Static filters → Policy-based guardrails → Adaptive guardrails (AGrail)



Example scenario

• A code-writing agent automates software deployment for research 
workflows
• It uses several external tools: GitHub, Docker, and AWS CLI
• Initially, it has only basic guardrails: e.g., “avoid deleting production 

resources”



Episode 1: First failure

• Agent executes, during a cleanup script (misinterpreting “temporary bucket”):
 aws s3 rm s3://lab-data/ --recursive

• A simple guardrail does not catch this because the term temporary appeared 
in the instruction
• AGrail’s Analyzer module records this event:
• Detected unsafe command pattern: aws s3 rm --recursive
• Context: script labeled “temporary” but pointing to production bucket

• Adds a new rule:
“If ‘--recursive’ deletion occurs on bucket containing prod or data, block and 
require confirmation”



Episode 2: Adaptation

• Later, the agent works on a new project (“bio-data-pipeline”)
• It encounters a similar script referencing bio-prod-data
• AGrail’s memory retrieves the earlier pattern and applies the learned 

rule automatically
• The Analyzer updates the policy with a generalized detector:
• pattern: "delete|rm"  AND  target includes ("prod","data","research")
   → require human confirmation

• This new rule becomes part of the agent’s permanent safety library





Agent Action Potential Consequence
Launches large HPC or cloud jobs Wastes $10 k–$100 k in compute credits; overloads shared clusters.
Submits faulty workflows or scripts Corrupts datasets; invalidates weeks of downstream analysis.
Deletes or overwrites experimental data Irrecoverable loss of results; violates data-management policy.
Auto-merges or deploys unverified code Breaks production pipelines; propagates undetected scientific errors.
Edits configuration or calibration files Introduces systematic bias across instruments or simulations.
Updates dependencies or packages Causes reproducibility failures or numerical instability.
Generates incorrect simulation inputs Produces plausible but physically meaningless outputs.
Moves robotic arm or liquid handler Spills reagents, contaminates samples, or damages equipment.
Changes lab setpoints (temperature, pressure, …) Exceeds safe limits; triggers mechanical or chemical failure.
Swaps reagents or materials Cross-contamination; invalid or hazardous reactions.
Ignores sensor alarms Misses over-pressure or thermal runaway; physical hazard to staff.
Accesses networked instruments (SiLA / OPC-UA) Unauthenticated control; risk of remote equipment damage.
Transmits restricted or sensitive data Breaches confidentiality or export-control compliance.
Coordinates dependent agents without verification Cascading unsafe actions across multiple systems.
Publishes unverified scientific outputs Propagates misinformation into the literature.
Designs unvetted compounds or synthesis routes Potential toxicity or dual-use chemical risk.
Allocates experimental or compute resources Creates inequity or starves human projects.
Deletes provenance or metadata Breaks audit trails; prevents post-incident analysis.
Advises human operators incorrectly Unsafe human interventions or decisions based on flawed reasoning.

Example failures in scientific agents 


