
AI Agents for Science

Instructor: Ian Foster
TA: Alok Kamatar

Crescat scientia; vita excolatur https://canvas.uchicago.edu/courses/67079
CMSC 35370 -- https://agents4science.github.io

Lecture 13, November 10
Building Agents and Workflows

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

Workflows: Systems where LLMs and tools are orchestrated through predefined code paths.
Agents: Systems where LLMs dynamically direct their own processes and tool usage, maintaining
control over how they accomplish tasks.

https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://www.anthropic.com/engineering/building-effective-agents Recall: Workflows vs. agents

https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents

Building agents and workflows: Readings

AFlow: Automating Agentic Workflow Generation

DSPy: Compiling Declarative Language Model Calls into Self-Improving
Pipelines

https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714

A simple example of an “AI workflow”
Task: Summarize a research paper, then generate three research questions based
on the summary, and rank the questions

1) Summarization
Prompt: “Summarize the following paper in one paragraph: {paper_text}”
Output: “This paper introduces a transformer model for protein folding …”

2) Question generation
Prompt: “Based on this summary, generate three research questions: {summary_from_step1}”
Output: “How can we improve folding accuracy?”, etc.

3) Ranking
Prompt: “Rank these research questions by novelty and feasibility: {questions_from_step2}”
Output: “Q2 > Q1 > Q3.”

Critique

• Fixed order and format: If step 1 produces too long or too short a
summary, step 2 fails or generates incoherent questions
• No feedback or self-correction: The system never checks whether the

questions actually relate to the paper
• No adaptation: It cannot adjust its strategy if, e.g., the paper is

mathematical, biological, or philosophical
• Manual tuning: Each prompt must be hand-crafted, and a small

change in model behavior breaks the pipeline

Building robust agents and workflows
• Recent systems aim to automate the composition, optimization, and

adaptation of pipelines
• Goal: turn “hand-crafted orchestration” into self-configuring,

learning workflows that continuously improve with use
• Key ideas:
• Represent agentic workflows declaratively rather than imperatively
• Have workflows introspect on their own performance and improve

automatically
• Apply data, evaluation, and compiler-like abstractions to self-improvement

Example of a robust pipeline
Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

• Ingest & sanity checks

• Grounded summarization (with retrieval)

• Question generation (diversity-controlled)

• Scoring & filtering

• Refinement loop (bounded)

• Final selection & packaging

• Detect format (PDF/HTML), extract text,
deduplicate pages, and chunk long inputs

• Validate language and length; if too
short/long, adjust chunking strategy

Example of a robust pipeline
Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

• Ingest & sanity checks

• Grounded summarization (with retrieval)

• Question generation (diversity-controlled)

• Scoring & filtering

• Refinement loop (bounded)

• Final selection & packaging

• Build a lightweight index over the paper chunks
• Prompt model to produce a sectioned summary

(Background/Method/Results/Limitations)
with citations to chunk IDs.

• Guardrail: A rule-based/LLM verifier checks that
each claim is attributable to cited chunks; if not,
re-prompt with stricter instructions or reduce
temperature

Example of a robust pipeline
Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

• Ingest & sanity checks

• Grounded summarization (with retrieval)

• Question generation (diversity-controlled)

• Scoring & filtering

• Refinement loop (bounded)

• Final selection & packaging

• Ask for K candidate questions across
categories (clarification, extension,
evaluation)

• Enforce a schema (JSON with category,
question, evidence_chunks)

• Guardrail: Deduplicate by embedding
similarity; drop near-duplicates

Example of a robust pipeline
Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

• Ingest & sanity checks

• Grounded summarization (with retrieval)

• Question generation (diversity-controlled)

• Scoring & filtering

• Refinement loop (bounded)

• Final selection & packaging

• Compute scores for relevance, novelty,
and feasibility using small scorers (could
be LLM-as-judge or lightweight heuristics)

• Apply thresholds; if average score < τ,
retry: adjust prompt (e.g., emphasize
methods/results) or route to a stronger
model for a second pass

Example of a robust pipeline
Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

• Ingest & sanity checks

• Grounded summarization (with retrieval)

• Question generation (diversity-controlled)

• Scoring & filtering

• Refinement loop (bounded)

• Final selection & packaging

• For any low-scoring question, request
a rewrite citing specific paper sections

• Stop after N iterations or upon meeting
quality thresholds

Example of a robust pipeline
Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

• Ingest & sanity checks

• Grounded summarization (with retrieval)

• Question generation (diversity-controlled)

• Scoring & filtering

• Refinement loop (bounded)

• Final selection & packaging

• Return top 3–5 questions with short
rationales and the chunk citations that
support them

• Log prompt variants, scores, and decisions
for self-improvement later (e.g., tune
prompts or module order based on
outcomes)

Example of a robust pipeline
Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

• Ingest & sanity checks

• Grounded summarization (with retrieval)

• Question generation (diversity-controlled)

• Scoring & filtering

• Refinement loop (bounded)

• Final selection & packaging

Resilience features baked in
• Schema validation (rejects malformed outputs)

• Attribution checks (prevents hallucinations)

• Retries with strategy shifts (temperature,
prompt, or model)

• Routing/fallback (use a cheaper model first,
escalate only if needed)

• Bounded loops & timeouts (no infinite retries)

• Caching (reuse summaries/scores when re-run
on similar inputs)

• Telemetry (store metrics to learn better
defaults over time)

DSPy (= Demonstrate-Search-Predict)
• DSPy is an open-source Python framework that allows developers to

build language model applications using modular and declarative
programming instead of relying on one-off prompting techniques
• Instead of free-form string prompts, DSPy programs use natural

language signatures to assign work to the LM. A DSPy signature is
natural-language typed declaration of a function: a short declarative
spec that tells DSPy what a text transformation needs to do (e.g.,
“consume questions and return answers”), rather than how a specific LM
should be prompted to implement that behavior. More formally, a DSPy
signature is a tuple of input fields and output fields (and an optional
instruction).

https://www.datacamp.com/blog/dspy-introduction

https://www.datacamp.com/blog/dspy-introduction
https://www.datacamp.com/blog/dspy-introduction
https://www.datacamp.com/blog/dspy-introduction

Simple question-answer pattern

Chain of thought

Compilation and optimizers

A DSPy program thus provides a signature for a prompt

“Compiling” a DSPy program means running an optimizer (a teleprompter)
that takes your program + a training set + a metric and searches for better
prompts/parameters

That search often includes choosing (or synthesizing) few-shot examples
to place in the prompt for each module

The optimizer simulates your pipeline on the training data, evaluates
candidates, and keeps the instruction text and example set that score best

Retrieval augmented generation

Bootstrapping
The following code compiles the RAG module against a dataset of question-
answer pairs, qa_trainset, to bootstrap few-shot demonstrations:

BootstrapFewShot

BootstrapFewShotWithRandomSearch

Evaluation
Goal is to explore the role of hand-written, task-specific prompts in
achieving performant systems. Seek to test three hypotheses:
H1: With DSPy, we can replace hand-crafted prompt strings with
 concise and well-defined modules, without reducing quality or
 expressive power
H2: Parameterizing the modules and treating prompting as an
 optimization problem makes DSPy better at adapting to different
 LMs, and it may outperform expert-written prompts
H3: The resulting modularity makes it possible to more thoroughly
 explore complex pipelines that have useful performance
 characteristics or that fit nuanced metrics

A grand goal

• We hope this begins a shift from underspecified questions like “how
do different LMs compare on GSM8K” toward “how they compare on
GSM8K with program P when compiled with strategy S”, which is a
well-defined and reproducible run

• Ultimately, our goal is to reduce the role of artful prompt construction
in modern AI in favor of the development of new modular,
composable programs and optimizers

Samples 5 reasoning chains
from the LM (+ answers) and
compares in parallel

“Compile” means running an optimizer (a teleprompter) that takes your program + a training
set + a metric and searches for better prompts/parameters. That search often
includes choosing (or synthesizing) few-shot examples to place in the prompt for each
module. In practice, the optimizer simulates your pipeline on the training data, evaluates
candidates, and keeps the instruction text and example set that score best.

DSPy optimizers can tune prompts and/or LM weights and many explicitly generate or select
demonstrations (e.g., BootstrapFewShot, LabeledFewShot, MIPROv2) during compile.
The optimizer typically runs the program on the training split, scores outputs with your
metric (e.g., EM/F1), and updates instructions + examples accordingly.

• AFlow treats the design of agentic workflows (i.e., sequences or graphs of
LLM-invocation nodes + tool calls + reasoning steps) as a search problem
• It uses techniques like Monte Carlo Tree Search (MCTS) over a space of

code-represented workflows: each workflow is represented as a graph of
nodes (LLM or tool calls) plus edges (flow of data) and AFlow searches that
space to find high-performing workflows.
• Empirical results: across QA, Code, Math datasets, workflows found by

AFlow improved over manually-designed workflows (average +5.7%
improvement) and allowed smaller models to outperform larger ones in
cost-performance trade-off
• Use case: When your problem requires designing the workflow structure

itself (not just prompt templates): e.g., deciding how many reasoning steps,
the tool calls, intermediate verification steps, ensemble nodes, etc.

AFlow: Automating Agentic Workflow Generation

Example: Scientific question answering

• You want an AI system to answer scientific questions such as:
 “Why does salt lower the freezing point of water?”

• You have:
• Access to a retrieval API: search_papers(query)
• A summarization LLM
• A reasoning LLM
• Optionally, a verifier LLM that checks factual consistency

• You don’t know which sequence of these modules (or how many
steps) yields the best factual accuracy

Define a function library

AFlow search strategy
• AFlow treats each function (LLM or tool) as a node, and possible data

flows as edges
• It automatically constructs and explores candidate workflows like:
• Simple chain: retrieve → summarize → reason
• Direct reasoning: retrieve → reason
• Verification branch: retrieve → summarize → reason → verify
• Two-pass reasoning: retrieve → reason → reason
• Parallel ensemble: (summarize₁ | summarize₂) → reason

• Each is represented internally as a graph. AFlow uses Monte Carlo
Tree Search (MCTS) to explore combinations, guided by their
performance on a validation set

Retrieve

Reason

VerifyReason

Summarize

Verify Reason

[Start]

Reason

Monte Carlo Tree Search

Automatic Evaluation

For each candidate workflow:
• AFlow executes it on a small training dataset (e.g., 100 science questions with

gold answers)
• Compares each workflow’s outputs using a scoring metric, e.g., F1 or factual

accuracy from GPT-4 evaluation
• The reward (accuracy) guides the search policy, favoring sub-graphs that yield

better answers
• Promising workflows are expanded or mutated (like AutoML for pipelines)

Discovered workflow example
After several search rounds, AFlow might find that the best-performing
workflow is:

retrieve
 ↓
summarize
 ↓
reason
 ↓
verify
 ↘ (if confidence < 0.8)
 reason_again

This “verified double-pass” pipeline turns out to outperform human-crafted
workflows: for example, achieving 78% factual accuracy versus 70% from baseline

Export and reuse
Once found, the workflow can be exported as runnable code or a JSON
graph:

You can then plug this into your LLM orchestrator (LangGraph, AutoGen,
etc.), or even wrap it as a DSPy program for further fine-tuning of
prompts or weights

Summary of actions taken

Stage What Happened
Define You provided building blocks (functions / modules)
Search AFlow explored possible graph structures of these modules
Evaluate Each workflow was tested on real examples
Optimize MCTS-based controller improved workflows by reward feedback
Output The best-performing workflow (a verified reasoning chain)

Concept AFlow DSPy Common Thread

Representation Agentic workflows,
roles, plans

Declarative task specs,
modules

Structured abstraction
for composition

Improvement
Mechanism

Self-refinement via
meta-feedback

End-to-end optimization
over evaluation metric Self-improving systems

Analogy AutoML for workflows Compiler for LLM
pipelines

Automation of pipeline
design and tuning

Outcome Adaptive, re-
composable workflows

Optimized, reusable LLM
components

“Self-engineering”
systems

AFlow and DSPy compared

Future diections

• Meta-agents for pipeline synthesis: agents that invent new
evaluation metrics, interfaces, and modular abstractions
• Cross-domain reuse: workflows that generalize across tasks via

learned schemas
• Integration with scientific computing: applying these ideas to

automate experiment planning, simulation–analysis loops, and lab
workflows
• Reflexive evaluation: systems that improve their own self-

improvement mechanisms (meta-optimization)

AI Agents for Science

Instructor: Ian Foster
TA: Alok Kamatar

Crescat scientia; vita excolatur https://canvas.uchicago.edu/courses/67079
CMSC 35370 -- https://agents4science.github.io

Lecture 14, November 12
Finetuning andreinforcement learning

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

Reinforcement learning papers

Adapting agents with reinforcement learning and real-world training.

OpenPipe/ART: Agent Reinforcement Trainer

Agent Lightning: Train ANY AI Agents with Reinforcement Learning

https://github.com/OpenPipe/ART
https://arxiv.org/abs/2508.03680

Recall: An agent is …

• An agent is a system that:
• Senses (reads inputs, environment, or tool responses)
• Plans (decides what to do next)
• Acts (calls a tool)
• Learns (updates state)

• Its operations are governed by policy that governs how it chooses
actions in response to states (its current context)
• An LLM/RM may be used in various contents

Possible roles of LLMs/RMs in agents

Stage Role / Function Possible LLM Involvement

Sense Observe the environment: read user
inputs, tool outputs, or API responses

LLM interprets or summarizes current
context (e.g., “What did the tool return?”)

Plan Decide what to do next: which subgoal
or tool to use, how to proceed

LLM generates next-step plans or chain-of-
thought reasoning

Act Execute chosen step: call a function,
run a tool, or generate a response

LLM issues structured commands or final
answers

Learn Improve based on results, rewards, or
feedback

RL or prompt optimization adjusts LLM
behavior or policy

Improving agent performance

• Goal: alter agent behavior, e.g., improves some aspect of performance
• Generally we want to do this by training, which may involve:
• LLM fine-tuning: Presenting agent LLM with structured data (e.g., prompt/

answer pairs) and adjusting LLM parameters to increase match to answer
• Reinforcement learning: Running the agent in a real or simulated environment

and adjusting aspects of the agent implementation (LLM, other policy
components) to improve the reward obtained

• Training can allow the agent to:
• Choose better next actions (more optimal tool calls, reasoning steps, responses)
• Improve reliability and efficiency over repeated interactions
• Learn from experience, not just static data

Levels at which performance may be improved

Level Object being improved Typical method What changes

Model (LLM) A single neural policy
that maps text → text

Fine-tuning
(supervised or RL-
based)

Model parameters or
adapters

Agent
implement.

A system that uses one
or more LLMs plus tools,
memory, control logic

Training loop/RL
algorithm (e.g., PPO,
GRPO, hierarchical RL)

Which sub-actions or calls
the agent chooses, and
how it coordinates them

Ecosystem /
runtime

The deployed
environment where
agents act and learn

Experience collection,
reward shaping,
orchestration

Datasets, trajectories, or
policies for multiple
agents

Recall: Fine tuning, in brief
Fine tuning refines a pre-trained model’s weights on domain-specific or task-
specific examples to improve accuracy, style, or reasoning
• Collect (prompt → ideal response) pairs
• Train with gradient descent on supervised or RL objectives to update model weights
• Validate and deploy new model checkpoint

Type Purpose
Supervised fine-tuning (SFT) Teach format, reasoning, tone
Instruction tuning Align with human prompts
Domain tuning Specialize to specific domains
LoRA / PEFT Lightweight, adapter-based updates

Fine-tuning paradigms

Type Description Typical Use
Supervised fine-tuning
(SFT)

Train model on labeled examples
of desired input→output Instruction tuning

Reinforcement learning
(RLHF/RLAIF)

Optimize model by reward
feedback Alignment

Agent fine-tuning Optimize entire agent workflow
using task success signals Adaptive agents

Fine tuning, RL, agents
• Fine-tuning is a technique that changes the LLM itself.

• Can be supervised (SFT, instruction tuning) or reinforcement-based (RLHF, GRPO, PPO)
• Its output is an improved model checkpoint or adapter

• Reinforcement Learning is a training paradigm that can operate inside or around an agent
• When the RL algorithm’s gradient flows into the LLM weights → that’s RL-based fine-

tuning
• When RL updates only the policy logic (e.g., planner, routing, parameter selection) →

it’s agent-level training without touching model weights.

• Agent frameworks (like Agent Lightning or ART) handle the outer loop: how experience is
gathered, rewards computed, and updates applied.
• Fine-tuning (of LLM weights) is one possible update target.
• Prompt optimization, rule tuning, or memory shaping are others.

Reinforcement learning
Reinforcement learning (RL), which has driven recent advances in reasoning
models such as DeepSeek- R1 and Kimi k1.5, offers a powerful paradigm for
optimizing LLMs in agentic scenarios. While supervised learning requires
detailed step-by-step annotations—which are scarce and costly for
complex interactive tasks—RL relies on outcome-based reward signals.
This eliminates the need for task-specific curated data and allows agents to
learn desirable behaviors directly from environment feedback across
diverse tasks. Moreover, the trial-and-error nature of RL closely mirrors
how humans acquire problem-solving skills, enabling models to learn
action policies grounded in deployment contexts. This capability opens up
the potential for transforming LLM-generated text tokens into real-world
actions, making RL a natural fit for training models in agent-based systems.

Reinforcement learning

• Problems involving an agent interacting with an environment, which
provides numeric reward signals
• Goal: Learn how to take actions in order to maximize reward

environment

agent

actionreward
new state

Fine tuning vs. reinforcement learning

When to Fine-Tune When to Apply RL

You have high-quality labeled data Labels are unavailable but you can define
a reward (success metric, correctness, user satisfaction)

You need consistent, static behavior
(e.g., summarization style)

You need adaptive, goal-directed behavior (e.g., tool
use, planning, dialogue).

Cost of annotation is lower than
cost of rollout

Cost of environment interaction is lower than mass
labeling

You want fast, repeatable training
cycles.

You want continual improvement from real-world
feedback

Why fine-tune LLMs?

LLMs trained on static Internet data struggle with real-world,
interactive tasks, e.g.:
• Tool-using agents
• Code-executing or debugging agents
• Retrieval-augmented generation (RAG) agents
• Conversational agents in long-horizon interactions
• Scientific or experimental agents
• Game-playing or embodied agents

Why static LLMs struggle in the real world

Domain Example Failure Why Static Data Fails

Tool Use (SQL, APIs) Misformats queries, can’t
fix execution errors

Never sees real API responses
or error messages

Code Agents Outputs code that fails
runtime tests

No reward for successful
execution

Retrieval-Augmented QA Retrieves irrelevant docs;
hallucinates

No supervision from retrieval
success/failure

Conversational Agents Breaks down over long
dialogs; repeats mistakes

No turn-level feedback or
satisfaction signal

Scientific Agents Suggests infeasible
experiments

Never observes outcomes or
experiment results

Embodied / Game Agents Knows rules but can’t win No experience-based learning
from rewards

Why fine-tune agents?

LLMs trained on static Internet data struggle with real-world, interactive
tasks
• Agents (tool users, planners, retrievers) generate rich experience

traces unavailable in pretraining
• Real-world improvement loop:

 Deploy → Observe → Reward → Update

Key idea: Environment provides the missing signal for continual learning

Tool-using agents: APIs, databases, …
Example: A text-to-SQL assistant like “Generate SQL for this query”
works fine on benchmark data, but:
• fails when it encounters an unfamiliar schema or proprietary function

(LEFT JOIN inventory vs. JOIN inv_table)
• does not know when to retry or how to parse an error message from

a real database
• cannot adapt to reward signals like execution success or query latency
Static-data limitation: Training on example pairs does not expose the
model to feedback loops or action–outcome dynamics. It never learns
that syntax errors → penalty, correct execution → reward.

Code-executing or debugging agents

Example: A code-writing model may output syntactically valid code but
repeatedly fail runtime tests (e.g., off-by-one errors, undefined
variables). As a static model it has no mechanism to:
• Re-run code, see failures, and adjust strategy
• Prefer code that passes tests over code that merely “looks right”

Reinforcement Learning (RL)-based adaptation can be a solution
• Training from execution rewards teaches it to explore, test, and self-

correct: the idea behind DeepSeek-R1 and Agent Lightning’s multi-
step credit assignment.

Retrieval-augmented generation (RAG) agents

Example: A RAG system answering “What are the latest results on
superconducting hydrides?” might:
• Retrieve irrelevant documents due to query mis-formulation
• Produce confident but hallucinated summaries

Static LLMs fail because:
• They’re trained to predict text, not to optimize retrieval relevance or

factuality
• They have no gradient signal from “did this retrieval actually help

answer the question?”

Conversational agents in long-horizon interactions

• Example: A customer-service chatbot can generate fluent single
replies, but breaks down when:
• It needs to maintain consistent memory across 10–20 turns
• It misinterprets user feedback (e.g., “That didn’t help”)
• It can’t adapt its strategy after repeated failures

• Static corpus problem: No natural signal for turn-level success,
conversation satisfaction, or task completion

Scientific or experimental agents

• A chemistry-design agent proposes a synthesis plan that is infeasible
when run in the lab, or doesn’t adjust when the experiment yields
unexpected results
• Static pretraining lacks closed-loop experience with experimental

outcomes; hence the push toward real-world fine-tuning from
observed results

Game-playing or embodied agents

• Example: An LLM describing “how to play chess” doesn’t learn to win
games
• Winning requires trial-and-error reward feedback
• This is why systems like OpenPipe/ART and Agent Lightning treat the

agent’s world as an environment with rewards

Methods for correcting limitations of static data
Challenge RL Solution Example Framework

No feedback loop Collects environment
rewards → updates model Agent Lightning, ART

No credit assignment Decomposes multi-turn
traces into transitions

LightningRL hierarchical
policy

No adaptation Iteratively improves via
rollout → reward → update OpenPipe / ART pipelines

No intermediate signals Automatic Intermediate
Rewarding (AIR)

Agent Lightning client
runtime

Long-horizon tasks Policy learning across
multiple steps

Hierarchical RL / GRPO /
PPO

Static prompts Optimizes prompts or
examples from data DSPy teleprompters

Summary

Challenge Why static data fails What RL fixes
Action-dependent
outcomes

No feedback loop in
text corpora

Reward from
environment outcomes

Error recovery No notion of “try →
fail → retry”

Credit assignment over
sequences

Long-horizon
consistency

Training truncates
context

Policy learning across
steps

Real-world
variation

Internet text ≠
dynamic tools/APIs

Experience-driven
adaptation

OpenPipe / ART: Agent Reinforcement Trainer

• Core concepts
• “OpenPipe” is a middleware for reinforcement tuning of agents, providing

interfaces for reward collection, logging, and evaluation
• ART (Agent Reinforcement Trainer) abstracts away infrastructure, connecting

LLMs, environments, and reward models
• Supports multi-episode training, rollout–train cycles, and integration with RL

frameworks like Hugging Face’s TRL or Microsoft’s VeRL

• Key contribution: makes RL-style fine-tuning operational for deployed
agents, not just isolated models

Agent Lightning: RL for any agent

• Core ideas:
• Training–Agent Disaggregation: separates agent execution (client) from RL training

(server)
• Unified Data Interface: every LLM/tool call logged as (input, output,

reward) transition.
• LightningRL: hierarchical RL method compatible with PPO/GRPO/REINFORCE++ (no

masking, no DAG parsing).
• Automatic Intermediate Rewarding (AIR): converts system telemetry (e.g., tool

success) into dense rewards.
• Example: training a calculator-using MathQA agent or text-to-SQL

workflow; each tool call becomes a transition used for policy optimization.
• Notes:

à Enables fine-tuning without code modification of existing agents (LangChain,
 AutoGen, etc.)
→ Bridges research RL frameworks (like VeRL) with real production agents.

ART vs. Agent Lightning

Aspect ART / OpenPipe Agent Lightning

Focus Training loop
orchestration and logging

Algorithm + data interface + system
integration

Data model Agent episodes with rewards
Unified (state, action,
reward) transitions

Flexibility Works with various RL
frameworks Works with any agent architecture

Innovation Standardized RL infra for
agents Decoupled training–execution + AIR

For example, Math QA
1) Algebraic Manipulation
• Problem: If 𝑥 = 4 and 𝑦 = 2𝑥 − 3, compute 𝑥! − 𝑦! / 𝑥 − 𝑦 .
• Solution reasoning:

𝑦 = 2 4 − 3 = 5
𝑥! − 𝑦! = 16 − 25 = −9

𝑥 − 𝑦 = −1
 à Result = 9

2) Geometry / Trigonometry
• Problem: A right triangle has sides of lengths 3 and 4. Find sine of larger acute angle
• Solution reasoning:

Hypotenuse = 5
sin(θ) = opposite/hypotenuse = 4/5 = 0.8

3)

Agent Lightning and Math QA

• Agent implementation: Single-LLM workflow that (a) plans, (b) issues
calculator calls, (c) integrates results, (d) answers

• Tool: calculator(expr: string) -> number (stateless).
AIR (Automatic Intermediate Rewarding) will mark a tool call “valid/invalid”
to yield intermediate rewards (format OK, tool executed, syntactically valid)

• Terminal reward: exact-match on numeric answer (1.0 if correct, else 0.0)

• LightningRL converts each LLM call into an action, does simple credit
assignment (same return to each action by default), then applies a single-
turn RL loss (e.g., GRPO/PPO) token-wise on each call’s output

Ground-truth answer (for reference)

• Compute stepwise (what the calculator is for):

• 𝑎!" = #
$

!"
= $

#

"
= "$

%

• 𝑏 = 7
• &"
#⋅(
= &"

&"
= 1

• So the target is:

Agent execution timeline
• Transition T1 – Plan & Compute (3/5)^(-2)

LLM output: {"expr":"(3/5)^(-2)"}
Tool: 2.7778
AIR reward ≈ 0.15

• Transition T2 – Compute sqrt(7)
Tool: 2.6458
AIR reward ≈ 0.15

• Transition T3 – Compute 12/(3*4)
Tool: 1
AIR reward ≈ 0.15

• Transition T4 – Combine & Answer
LLM: {"answer":"(25/9)+sqrt(7)-1≈4.4228"}
Terminal reward = 1.0 (correct)

• Total Return R ≈ 1.45

Automatic Intermediate Rewarding (AIR)
enables the assignment of intermediate
rewards to transitions based on system
monitoring signals (such as tool call return
statuses)

• Input_1 (state → observation):
System: You are a math solver. Use the calculator tool for exact arithmetic.
User: If a=3/5 and b=7, compute (a^-2 + sqrt(b)) - 12/(3*4).
Respond in JSON with fields: {"plan": "...", "next_action": "compute" | "answer",
"expr": "..."}

• LLM Output_1 (action a1):
{"plan":"Compute a^-2, compute sqrt(7), compute 12/(3*4), then combine.",
"next_action":"compute","expr":"(3/5)^(-2)"}

• AIR intermediate reward r_1 (format): +0.05 if JSON parseable & fields
present
• AIR intermediate reward r_1 (tool-eligibility): +0.05 if expr is calculator-

valid (simple static check)

T1 computation in more detail

Unified data trace

• Logged transitions (simplified JSONL):
{"t":1, "input":"UserInput", "output":"(3/5)^(-2)", "reward":0.15}
{"t":2, "input":"...ToolResult1...", "output":"sqrt(7)", "reward":0.15}
{"t":3, "input":"...ToolResult2...", "output":"12/(3*4)", "reward":0.15}
{"t":4, "input":"...ToolResult3...", "output":"Answer≈4.4228", "reward":1.0}

• Observations
• Each LLM call = one action in the Markov decision process
• No masking, no concatenation: just clean transitions for RL

LightningRL Optimization Flow

• Credit Assignment: Assign per-step or uniform return to each transition
• Token-Level Optimization: Apply single-turn RL loss (GRPO/ PPO/

REINFORCE++)
• Batching: Transitions grouped by task for advantage estimation
• AIR: Provides dense shaping rewards to accelerate learning
• Benefits:
• Modular and scalable (no coupling between agent logic & RL engine)
• Works across AutoGen, LangChain, or custom agents

Policy-gradient RL for language models

• Policy-gradient methods optimize a parameterized model πₜₕₑₜₐ(a | s)
(the LLM) to increase expected reward. The general objective is:

∇!𝐽 𝜃 = 𝔼",$∼&" ∇! log 𝜋! 𝑎 ∣ 𝑠 𝐴 𝑠 𝑎 ,

 where A(s,a) (“advantage”) measures how much better the sampled
 action’s reward is than average

• In LLM fine-tuning,
• state s = prompt or context
• action a = the generated text
• reward r = numeric score (helpfulness, correctness, etc.)

• advantage A = signal telling the model which responses were better

Feature PPO GRPO REINFORCE++
Critic network yes none none
Advantage baseline Value function Group mean / std Batch mean
Stability Very high Moderate Lower
Compute cost Highest Medium Lowest
Use in Agent Lightning Supported but heavy Default choice Optional

• Proximal Policy Optimization (PPO): take conservative updates so
new policy does not drift too far from previous
• Group Relative Policy Optimization (GRPO): Group several model

outputs for same prompt/task, normalize rewards. Default.
• REINFORCE++: Simplest; no critic, no grouping
 Methods differ only in how they compute A(s,a)

Policy gradient methods used in Agent Lightning

Training results
• Dataset: Calc-X + Base Model: Llama-3.2-3B-Instruct
• Smooth, consistent improvement in both train & test reward curves
• Improved accuracy in symbolic + numeric tasks
• Robust handling of multi-turn reasoning with tool invocations

Agent Lightning summary

• Transition-based modeling enables fine-grained RL on complex
workflows
• Automatic Intermediate Rewarding (AIR) mitigates sparse reward

problem
• LightningRL reuses efficient single-turn RL across multi-step, tool-

augmented agents
• Training-Agent Disaggregation (server ↔ client) allows zero agent code

modification
• Outcome: Agent Lightning continuously improves tool-using math

agents, achieving both reliability and scalability

