Al Agents for Science

Lecture 13, November 10
Building Agents and Workflows

Instructor: lan Foster
TA: Alok Kamatar

= CMSC 35370 -- https://agents4science.github.io
FresEn cefeniey it sl https://canvas.uchicago.edu/courses/67079

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

https://langchain-ai.github.io/langgraph/tutorials/workflows/

Re Ca I I : WO r kfl OWS VS . a ge nts https://www.anthropic.com/engineering/building-effective-agents

Workflows: Systems where LLMs and tools are orchestrated through predefined code paths.
Agents: Systems where LLMs dynamically direct their own processes and tool usage, maintaining

control over how they accomplish tasks.
' Workflows Agent
Orchestrator-Worker
vt Al @ | e
. . : no— | & T e —y
Prompt Chainin i LN ey LT !
LLEmIl g * 1\~~"‘ LLM call Tool
T T | _ . . g 4 action ;T
W @ @ o g Evaluator opltlmlzer Cn— & 9 om
Grenerator Bvaluat, ! ‘-‘ _____________ : { _____________ |
Parallelization | B @ @ o e
PIcEraE. o S~
: o ! . : feedback
NG Routing | o
|_@_- o Router. {/_%’%-/Eeo@
In —> —@9—:
\ :[@ —> Out

'
,,,

LLM directs its own actions

LLM directs control flow :
;based on environmental feedbacl

LLM is embedded in
through predefined code paths

épredefined code paths

https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://langchain-ai.github.io/langgraph/tutorials/workflows/
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents

Building agents and workflows: Readings

AFlow: Automating Agentic Workflow Generation

DSPy: Compiling Declarative Language Model Calls into Self-Improving
Pipelines

https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714

A simple example of an “Al workflow”

Task: Summarize a research paper, then generate three research questions based
on the summary, and rank the questions

1) Summarization

Prompt: “Summarize the following paper in one paragraph: {paper_text}”

Output: “This paper introduces a transformer model for protein folding ...”

2) Question generation

Prompt: “Based on this summary, generate three research questions: {summary_from_step1}’

Output: “How can we improve folding accuracy?”, etc.
3) Ranking

Prompt: “Rank these research questions by novelty and feasibility: {questions_from_step2}”
Output: “Q2 >Q1>Q3”

Critique

* Fixed order and format: If step 1 produces too long or too short a
summary, step 2 fails or generates incoherent questions

* No feedback or self-correction: The system never checks whether the
questions actually relate to the paper

* No adaptation: It cannot adjust its strategy if, e.g., the paper is
mathematical, biological, or philosophical

* Manual tuning: Each prompt must be hand-crafted, and a small
change in model behavior breaks the pipeline

Building robust agents and workflows

* Recent systems aim to automate the composition, optimization, and
adaptation of pipelines

* Goal: turn “hand-crafted orchestration” into self-configuring,
learning workflows that continuously improve with use

* Key ideas:
* Represent agentic workflows declaratively rather than imperatively
* Have workflows introspect on their own performance and improve
automatically
* Apply data, evaluation, and compiler-like abstractions to self-improvement

Example of a robust pipeline

Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

* Ingest & sanity checks * Detect format (PDF/HTML), extract text,
deduplicate pages, and chunk long inputs

* Grounded summarization (with retrieval) * Validate language and length; if too
short/long, adjust chunking strategy

* Question generation (diversity-controlled)
* Scoring & filtering
* Refinement loop (bounded)

* Final selection & packaging

Example of a robust pipeline

Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

* Ingest & sanity checks
& y * Build a lightweight index over the paper chunks
e Prompt model to produce a sectioned summary
(Background/Method/Results/Limitations)
with citations to chunk IDs.

* Guardrail: A rule-based/LLM verifier checks that
_ _ _ each claim is attributable to cited chunks; if not,
* Scoring & filtering re-prompt with stricter instructions or reduce
temperature

* Grounded summarization (with retrieval)

* Question generation (diversity-controlled)

* Refinement loop (bounded)

* Final selection & packaging

Example of a robust pipeline

Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

* Ingest & sanity checks

* Grounded summarization (with retrieval) * Ask for K candidate questions across
categories (clarification, extension,

* Question generation (diversity-controlled) evaluation)

* Enforce a schema (JSON with category,

. Scoring & filtering question, evidence_chunks)

e Guardrail: Deduplicate by embedding
similarity; drop near-duplicates

* Refinement loop (bounded)

* Final selection & packaging

Example of a robust pipeline

Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

* Ingest & sanity checks

* Grounded summarization (with retrieval)

* Question generation (diversity-controlled) « Compute scores for relevance, novelty,
and feasibility using small scorers (could
e Scoring & filtering be LLM-as-judge or lightweight heuristics)

* Apply thresholds; if average score < T,

* Refinement loop (bounded) retry: adjust prompt (e.g., emphasize
methods/results) or route to a stronger
model for a second pass

* Final selection & packaging

Example of a robust pipeline

Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

* Ingest & sanity checks

* Grounded summarization (with retrieval)

* Question generation (diversity-controlled)

* Scoring & filtering * For any low-scoring question, request

a rewrite citing specific paper sections

* Refinement loop (bounded) Stop after N iterations or upon meeting

quality thresholds

* Final selection & packaging

Example of a robust pipeline

Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

* Ingest & sanity checks

* Grounded summarization (with retrieval)

* Question generation (diversity-controlled)

* Scoring & filtering * Return top 3-5 questions with short
rationales and the chunk citations that

* Refinement loop (bounded) support them

* Log prompt variants, scores, and decisions
* Final selection & packaging for self-improvement later (e.g., tune

prompts or module order based on
outcomes)

Example of a robust pipeline

Goal: Summarize a paper, generate research questions, and return only
high-quality, on-topic, non-redundant questions

Resilience features baked in

¢ IngeSt & sanity checks * Schema validation (rejects malformed outputs)

. . . . * Attribution checks (prevents hallucinations)
* Grounded summarization (Wlth retrleval)

* Retries with strategy shifts (temperature,

H . . . t, d I
* Question generation (diversity-controlled) prompt, or model)

* Routing/fallback (use a cheaper model first,
escalate only if needed)

* Scoring & filtering

* Bounded loops & timeouts (no infinite retries)

* Refinement loop (bounded) y CachingI (reuse SL)Jmmaries/scores when re-run
on similar inputs

* Final selection & packaging * Telemetry (store metrics to learn better
defaults over time)

DSPy (= Demonstrate-Search-Predict)

* DSPy is an open-source Python framework that allows developers to
build language model applications using modular and declarative
programming instead of relying on one-off prompting techniques

* Instead of free-form string prompts, DSPy programs use natural
language signatures to assign work to the LM. A DSPy signature is
natural-language typed declaration of a function: a short declarative
spec that tells DSPy what a text transformation needs to do (e.g.,
“consume questions and return answers”), rather than how a specific LM
should be prompted to implement that behavior. More formally, a DSPy
signature is a tuple of input fields and output fields (and an optional
instruction).

https://www.datacamp.com/blog/dspy-introduction

https://www.datacamp.com/blog/dspy-introduction
https://www.datacamp.com/blog/dspy-introduction
https://www.datacamp.com/blog/dspy-introduction

Simple question-answer pattern

1 qa = dspy.Predict(”"question -> answer”)
2 ga(question="Where is Guarani spoken?")

3# Out:

Prediction(answer=’Guarani is spoken mainly in South America.’)

Chain of thought

1 class ChainOfThought(dspy.Module):

2 def
3
4
5
6
7
8
9
10 def
11
12

__init__(self, signature):

Modify signature from ‘xinputs -> *outputs‘ to ‘*inputs -> rationale, *outputs ‘.
rationale_field = dspy.OutputField(prefix="Reasoning: Let’s think step by step.")
signature = dspy.Signature(signature).prepend_output_field(rationale_field)

Declare a sub-module with the modified signature.
self.predict = dspy.Predict(signature)

forward(self, *xkwargs):
Just forward the inputs to the sub-module.
return self.predict (**xkwargs)

Compilation and optimizers

A DSPy program thus provides a signature for a prompt

“Compiling” a DSPy program means running an optimizer (a teleprompter)
that takes your program + a training set + a metric and searches for better
prompts/parameters

That search often includes choosing (or synthesizing) few-shot examples
to place in the prompt for each module

The optimizer simulates your pipeline on the training data, evaluates
candidates, and keeps the instruction text and example set that score best

—

Retrieval augmented generation

1 class RAG(dspy.Module):

S O 00 OBk W

def

def

__init__(self, num_passages=3):

‘Retrieve‘ will use the user’s default retrieval settings unless overriden.
self.retrieve = dspy.Retrieve(k=num_passages)

‘ChainOfThought ‘¢ with signature that generates answers given retrieval & question.
self.generate_answer = dspy.ChainOfThought ("context, question -> answer")

forward(self, question):
context = self.retrieve(question).passages
return self.generate_answer (context=context, question=question)

Bootstrapping

The following code compiles the RAG module against a dataset of question-
answer pairs, ga_trainset, to bootstrap few-shot demonstrations:

1# Small training set with only questions and final answers.

2 qa_trainset = [dspy.Example(question="What is the capital of France?”, answer="Paris")]
3
4# The teleprompter will bootstrap missing labels: reasoning chains and retrieval contexts.
5 teleprompter = dspy.BootstrapFewShot(metric=dspy.evaluate.answer_exact_match)
6 compiled_rag = teleprompter.compile(RAG(), trainset=qga_trainset)

Compiling As we discussed in Section 4, DSPy programs can be compiled into new, optimized
programs. In our experiments, we evaluate the programs zero-shot (no compiling) as well as a
number of strategies for compiling. Our simplest compiler is LabeledFewShot:

1 fewshot = dspy.LabeledFewShot (k=8).compile (program, trainset=trainset)

Here, program can be any DSPy module. This simply samples k=8 random demonstrations from the
trainset for the fields common to the training examples and the signature(s), in this case, question
and answer, but not the reasoning for instance. We report the average of 3—5 runs (depending on the
setting) when applying such random sampling.

Teleprompters can be composed by specifying a teacher program. DSPy will sample demonstra-
tions from this program for prompt optimization. This composition can enable very rich pipelines,
where expensive programs (e.g., complex expensive ensembles using large LMs) supervise cheap
programs (e.g., simple pipelines using smaller LMs). One may start with compiled_rag from above
(say, compiled to use a large Llama2-13b-chat LM) but now fine-tune Flan-T5-large to create an
efficient program:

1# Larger set of questions with *no labelsx. Labels for all steps will be bootstrapped.

2 unlabeled_questions = [dspy.Example(question="What is the capital of Germany?"), ...]

3

4# As we assumes no answer, we use ‘answer_passage_match‘ to filter ungrounded answers.

5 finetuning_teleprompter = BootstrapFinetune(metric=dspy.evaluate.answer_passage_match)

6

7# We set ‘teacher=compiled_rag‘ to compose. Bootstrapping will now use ‘compiled_rag*®.

8 compiled_rag_via_finetune = finetuning_teleprompter.compile(RAG(), teacher=compiled_rag,
trainset=unlabeled_questions, target=’google/flan-t5-large’)

BootstrapFewShot

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

class SimplifiedBootstrapFewShot(Teleprompter):

def

def

__init__(self, metric=None):
self.metric = metric

compile(self, student, trainset, teacher=None):
teacher = teacher if teacher is not None else student
compiled_program = student.deepcopy()

Step 1. Prepare mappings between student and teacher Predict modules.

Note: other modules will rely on Predict internally.

assert student_and_teacher_have_compatible_predict_modules(student, teacher)
name2predictor, predictor2name = map_predictors_recursively(student, teacher)

Step 2. Bootstrap traces for each Predict module.
We’ll loop over the training set. We’ll try each example once for simplicity.
for example in trainset:

if we_found_enough_bootstrapped_demos(): break

turn on compiling mode which will allow us to keep track of the traces
with dspy.setting.context(compiling=True):
run the teacher program on the example, and get its final prediction
note that compiling=True may affect the internal behavior here
prediction = teacher (x*example.inputs())

get the trace of the all interal Predict calls from teacher program
predicted_traces = dspy.settings.trace

if the prediction is valid, add the example to the traces
if self.metric(example, prediction, predicted_traces):
for predictor, inputs, outputs in predicted_traces:
d = dspy.Example (automated=True, *xinputs, **outputs)
predictor_name = self.predictor2name[id(predictor)]
compiled_program[predictor_name].demonstrations. append(d)

return compiled_program

BootstrapFewShotWithRandomSearch

1 class SimplifiedBootstrapFewShotWithRandomSearch(Teleprompter):

2 def __init__(self, metric = None, trials=16):

3 self.metric = metric

4 self.trials = trials

5

6 def compile(self, student, *, teacher=None, trainset, valset=None):

7 # we can do forms of cross-validation if valset is unset.

8 valset = trainset if valset is None else valset

9

10 candidates = []

11 for seed in range(self.trials):

12 # Create a new basic bootstrap few-shot program.

13 shuffled_trainset = shuffle(trainset, seed=seed)

14 tp = BootstrapFewShot(metric=metric, max_bootstrap_demos=random_size())
15 candidate_program = tp.compile(student, shuffled_trainset, teacher)
16

17 # Step 2: Evaluate the generated candidate program.

18 score = evaluate_program(candidate_program, self.metric, valset)
19 candidates. append((score, candidate_program))

20

21 # return the best candidate program.

22 return max(candidates, key=lambda x: x[0Q])[1]

Evaluation

Goal is to explore the role of hand-written, task-specific prompts in
achieving performant systems. Seek to test three hypotheses:

H1: With DSPy, we can replace hand-crafted prompt strings with
concise and well-defined modules, without reducing quality or
expressive power

H2: Parameterizing the modules and treating prompting as an
optimization problem makes DSPy better at adapting to different
LMs, and it may outperform expert-written prompts

H3: The resulting modularity makes it possible to more thoroughly
explore complex pipelines that have useful performance
characteristics or that fit nuanced metrics

A grand goal

* We hope this begins a shift from underspecified questions like “how
do different LMs compare on GSM8K” toward “how they compare on
GSMB8K with program P when compiled with strategy S”, which is a
well-defined and reproducible run

 Ultimately, our goal is to reduce the role of artful prompt construction
in modern Al in favor of the development of new modular,
composable programs and optimizers

We evaluate on the popular GSMS8K dataset with grade school math questions (Cobbe et al., 2021).
We sample 200 and 300 question—answer pairs from the official training set for training and develop-
ment, respectively. Our final evaluations use the 1.3k official test set examples. We report extensive
comparisons on the development set to avoid overfitting on test. Following prior work on GSM8K,
we evaluate the accuracy of the final numerical value that appears in the LM output.

Programs Considered For this task, we consider three simple DSPy programs: a one-step Pre-
dict module (vanilla), a two-step ChainOfThought module (CoT), and finally a multi-stage Com-
parerOfThoughts module (ThoughtReflection). These are fully defined by the following code:

1 vanilla = dspy.Predict("question -> answer") # GSM8K Program ‘vanilla‘
2

3 CoT = dspy.ChainOfThought(”"question -> answer”) # GSM8K Program ‘CoT

1 class ThoughtReflection(dspy.Module):

2 def __init__(self, num_attempts):

3 self .predict = dspy.ChainOfThought("question -> answer”, n=num_attempts)

4 self.compare = dspy.MultiChainComparison(’question -> answer’, M=num_attempts)

5

6 def forward(self, question): : :

7 completions = self.predict(question=question).completions SamplesSreasonmg chains
8 return self.compare(question=question, completions=completions) from the LM (+ answers) and
9 .

10 reflection = ThoughtReflection(num_attempts=5) # GSM8K Program ‘reflection ® compares in paraIIeI

“Compile” means running an optimizer (a teleprompter) that takes your program + a training
set + a metric and searches for better prompts/parameters. That search often

includes choosing (or synthesizing) few-shot examples to place in the prompt for each
module. In practice, the optimizer simulates your pipeline on the training data, evaluates
candidates, and keeps the instruction text and example set that score best.

DSPy optimizers can tune prompts and/or LM weights and many explicitly generate or select
demonstrations (e.g., BootstrapFewShot, LabeledFewShot, MIPROv2) during compile.

The optimizer typically runs the program on the training split, scores outputs with your
metric (e.g., EM/F1), and updates instructions + examples accordingly.

Compiling As we discussed in Section 4, DSPy programs can be compiled into new, optimized
programs. In our experiments, we evaluate the programs zero-shot (no compiling) as well as a
number of strategies for compiling. Our simplest compiler is LabeledFewShot:

1 fewshot = dspy.LabeledFewShot (k=8).compile(program, trainset=trainset)

Here, program can be any DSPy module. This simply samples k=8 random demonstrations from the
trainset for the fields common to the training examples and the signature(s), in this case, question
and answer, but not the reasoning for instance. We report the average of 3—5 runs (depending on the
setting) when applying such random sampling.

Table 1: Results with in-context learning on GSM8K math word problems. Each row represents
a separate pipeline: the module in the Program column is compiled against the examples in the
Training set. The programs, compilers, and (small) training sets are defined in Section 6. Rows with
ensemble build on the immediately preceding row. Notably, all programs in this table are expressed
by composing two to four DSPy modules and teleprompters. Compiling the correct modules, instead
of string prompts, improves different LMs from 4-20% accuracy to 49—88% accuracy.

GPT-3.5 Llama2-13b-chat

Program Compilation Training Dev Test Dev Test
none n/a 240 25.2 7.0 9.4

fewshot trainset 33.1 — 4.3 —

vanilla bootstrap trainset 44.0 - 28.0 -
bootstrapx2 trainset 64.7 61.7 37.3 36.5

+ensemble trainset 627 619 39.0 34.6

none n/a 50.0 - 26.7 -

fewshot trainset 63.0 - 273 -

CoT fewshot +human_CoT 78.6 724 34.3 33.7
bootstrap trainset 80.3 729 433 -

+ensemble trainset 88.3 81.6 43.7 -

none n/a 65.0 - 36.7 -

reflection fewshot trainset 71.7 - 36.3 —
bootstrap trainset 83.0 760 443 40.2

+ensemble trainset 86.7 - 49.0 46.9

AFlow: Automating Agentic Workflow Generation

* AFlow treats the design of agentic workflows (i.e., sequences or graphs of
LLM-invocation nodes + tool calls + reasoning steps) as a search problem

* |t uses techniques like Monte Carlo Tree Search (MCTS) over a space of
code-represented workflows: each workflow is represented as a graph of
nodes (LLM or tool calls) plus edges (flow of data) and AFlow searches that
space to find high-performing workflows.

* Empirical results: across QA, Code, Math datasets, workflows found by
AFlow improved over manually-designed workflows (average +5.7%
improvement) and allowed smaller models to outperform larger ones in
cost-performance trade-off

* Use case: When your problem requires designing the workflow structure
itself (not just prompt templates): e.g., deciding how many reasoning steps,
the tool calls, intermediate verification steps, ensemble nodes, etc.

Example: Scientific question answering

* You want an Al system to answer scientific questions such as:
“Why does salt lower the freezing point of water?”

* You have:
* Access to a retrieval API: search_papers(query)
* A summarization LLM

* Areasoning LLM
* Optionally, a verifier LLM that checks factual consistency

* You don’t know which sequence of these modules (or how many
steps) yields the best factual accuracy

Define a function library

def retrieve(query):
return search_papers(query, top_k=5)

def summarize(texts):
return LLM("Summarize the key findings:", texts)

def reason(question, context):
return LLM(f"Answer the question based on this context:\n{context}\nQ: {question}\nA:")

def verify(question, answer):
return LLM(f"Is the following answer correct? Q:{question} A:{answer}")

AFlow search strategy

* AFlow treats each function (LLM or tool) as a node, and possible data
flows as edges

* |t automatically constructs and explores candidate workflows like:
* Simple chain: retrieve - summarize - reason
* Direct reasoning: retrieve - reason
* Verification branch: retrieve - summarize - reason - verify
* Two-pass reasoning: retrieve - reason - reason
* Parallel ensemble: (summarize; | summarize;) - reason

* Each is represented internally as a graph. AFlow uses Monte Carlo
Tree Search (MCTS) to explore combinations, guided by their
performance on a validation set

Monte Carlo Tree Search [Start]

Retrieve

Reason Summarize

Verify Reason Reason

Reason

Automatic Evaluation

For each candidate workflow:

* AFlow executes it on a small training dataset (e.g., 100 science questions with
gold answers)

* Compares each workflow’s outputs using a scoring metric, e.g., F1 or factual
accuracy from GPT-4 evaluation

* The reward (accuracy) guides the search policy, favoring sub-graphs that yield
better answers

* Promising workflows are expanded or mutated (like AutoML for pipelines)

Discovered workflow example

After several search rounds, AFlow might find that the best-performing
workflow is:
retrieve

NG

summarize

NG

reason

N
verify
\ (if confidence < 0.8)
reason_again
This “verified double-pass” pipeline turns out to outperform human-crafted
workflows: for example, achieving 78% factual accuracy versus 70% from baseline

Export and reuse

Once found, the workflow can be exported as runnable code or a JSON
graph: <

"nodes": ["retrieve", "summarize", "reason", "verify"],
"edges": [

["retrieve", "summarize"],

["summarize", "reason"],

["reason", "verify"],

["verify", "reason"]

¥

You can then plug this into your LLM orchestrator (LangGraph, AutoGen,
etc.), or even wrap it as a DSPy program for further fine-tuning of
prompts or weights

Summary of actions taken

Stage What Happened

Define You provided building blocks (functions / modules)

Search AFlow explored possible graph structures of these modules

Evaluate |Each workflow was tested on real examples

Optimize |MCTS-based controller improved workflows by reward feedback

Output | The best-performing workflow (a verified reasoning chain)

AFlow and DSPy compared

Concept AFlow DSPy Common Thread

. Agentic workflows, Declarative task specs, | Structured abstraction
Representation e

roles, plans modules for composition
Improvement | Self-refinement via End-to-end optimization Self-imoroving svsterms
Mechanism meta-feedback over evaluation metric P &5y
Analogy AutoML for workflows Cf)mpller for LLM Autf)matlon of-plpellne
pipelines design and tuning

Outcome Adaptive, re- Optimized, reusable LLM | “Self-engineering

composable workflows | components systems

Future diections

* Meta-agents for pipeline synthesis: agents that invent new
evaluation metrics, interfaces, and modular abstractions

* Cross-domain reuse: workflows that generalize across tasks via
learned schemas

* Integration with scientific computing: applying these ideas to
automate experiment planning, simulation—analysis loops, and lab
workflows

* Reflexive evaluation: systems that improve their own self-
improvement mechanisms (meta-optimization)

Al Agents for Science

Lecture 14, November 12
Finetuning andreinforcement learning

Instructor: lan Foster
TA: Alok Kamatar

= CMSC 35370 -- https://agents4science.github.io
FresEn cefeniey it sl https://canvas.uchicago.edu/courses/67079

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

Reinforcement learning papers
Adapting agents with reinforcement learning and real-world training.

OpenPipe/ART: Agent Reinforcement Trainer

Agent Lightning: Train ANY Al Agents with Reinforcement Learning

https://github.com/OpenPipe/ART
https://arxiv.org/abs/2508.03680

Recall: An agent is ...

* An agent is a system that:
* Senses (reads inputs, environment, or tool responses)
* Plans (decides what to do next)
* Acts (calls a tool)
* Learns (updates state)

* |ts operations are governed by policy that governs how it chooses
actions in response to states (its current context)

* An LLM/RM may be used in various contents

Possible roles of LLMs/RMs in agents

Stage |Role / Function Possible LLM Involvement

Sense Observe the environment: read user LLM interprets or summarizes current
inputs, tool outputs, or APl responses | context (e.g., “What did the tool return?”)

Plan Decide what to do next: which subgoal | LLM generates next-step plans or chain-of-
or tool to use, how to proceed thought reasoning

Act Execute chosen step: call a function, LLM issues structured commands or final
run a tool, or generate a response answers

Learn Improve based on results, rewards, or | RL or prompt optimization adjusts LLM
feedback behavior or policy

Improving agent performance

* Goal: alter agent behavior, e.g., improves some aspect of performance

* Generally we want to do this by training, which may involve:

* LLM fine-tuning: Presenting agent LLM with structured data (e.g., prompt/
answer pairs) and adjusting LLM parameters to increase match to answer

* Reinforcement learning: Running the agent in a real or simulated environment
and adjusting aspects of the agent implementation (LLM, other policy
components) to improve the reward obtained

* Training can allow the agent to:
* Choose better next actions (more optimal tool calls, reasoning steps, responses)
* Improve reliability and efficiency over repeated interactions
* Learn from experience, not just static data

Levels at which performance may be improved

Level Object being improved | Typical method What changes
. : Fine-tuning

Model (LLM) A single neural policy (supervised or RL- Model parameters or

that maps text - text adapters

based)

A system that uses one | Training loop/RL Which sub-actions or calls
Agent :
. or more LLMs plus tools, | algorithm (e.g., PPO, |the agent chooses, and
implement.

memory, control logic

GRPO, hierarchical RL)

how it coordinates them

Ecosystem /
runtime

The deployed
environment where
agents act and learn

Experience collection,
reward shaping,
orchestration

Datasets, trajectories, or
policies for multiple
agents

Recall: Fine tuning, in brief

Fine tuning refines a pre-trained model’s weights on domain-specific or task-
specific examples to improve accuracy, style, or reasoning
* Collect (prompt = ideal response) pairs
* Train with gradient descent on supervised or RL objectives to update model weights
* Validate and deploy new model checkpoint

Type Purpose

Supervised fine-tuning (SFT) Teach format, reasoning, tone
Instruction tuning Align with human prompts

Domain tuning Specialize to specific domains
LoRA / PEFT Lightweight, adapter-based updates

Fine-tuning paradigms

Type

Description

Typical Use

Supervised fine-tuning
(SFT)

Train model on labeled examples
of desired input—>output

Instruction tuning

Reinforcement learning
(RLHF/RLAIF)

Optimize model by reward
feedback

Alignment

Agent fine-tuning

Optimize entire agent workflow
using task success signals

Adaptive agents

Fine tuning, RL, agents

* Fine-tuning is a technique that changes the LLM itself.
* Can be supervised (SFT, instruction tuning) or reinforcement-based (RLHF, GRPO, PPO)

* Its output is an improved model checkpoint or adapter

* Reinforcement Learning is a training paradigm that can operate inside or around an agent

* When the RL algorithm’s gradient flows into the LLM weights - that’s RL-based fine-
tuning

* When RL updates only the policy logic (e.g., planner, routing, parameter selection) -
it’s agent-level training without touching model weights.
* Agent frameworks (like Agent Lightning or ART) handle the outer loop: how experience is
gathered, rewards computed, and updates applied.
* Fine-tuning (of LLM weights) is one possible update target.

* Prompt optimization, rule tuning, or memory shaping are others.

Reinforcement learning

Reinforcement learning (RL), which has driven recent advances in reasoning
models such as DeepSeek- R1 and Kimi k1.5, offers a powerful paradigm for
optimizing LLMs in agentic scenarios. While supervised learning requires
detailed step-by-step annotations—which are scarce and costly for
complex interactive tasks—RL relies on outcome-based reward signals.
This eliminates the need for task-specific curated data and allows agents to
learn desirable behaviors directly from environment feedback across
diverse tasks. Moreover, the trial-and-error nature of RL closely mirrors
how humans acquire problem-solving skills, enabling models to learn
action policies grounded in deployment contexts. This capability opens up
the potential for transforming LLM-generated text tokens into real-world
actions, making RL a natural fit for training models in agent-based systems.

Reinforcement learning

* Problems involving an agent interacting with an environment, which
provides numeric reward signals

* Goal: Learn how to take actions in order to maximize reward

environment

new state

agent

Fine tuning vs. reinforcement learning

When to Fine-Tune

When to Apply RL

You have high-quality labeled data

Labels are unavailable but you can define
a reward (success metric, correctness, user satisfaction)

You need consistent, static behavior
(e.g., summarization style)

You need adaptive, goal-directed behavior (e.g., tool
use, planning, dialogue).

Cost of annotation is lower than
cost of rollout

Cost of environment interaction is lower than mass
labeling

You want fast, repeatable training
cycles.

You want continual improvement from real-world
feedback

Why fine-tune LLMs?

LLMs trained on static Internet data struggle with real-world,
interactive tasks, e.g.:

* Tool-using agents

* Code-executing or debugging agents

* Retrieval-augmented generation (RAG) agents

* Conversational agents in long-horizon interactions
* Scientific or experimental agents

* Game-playing or embodied agents

Why static LLMs struggle in the real world

Domain

Example Failure

Why Static Data Fails

Tool Use (SQL, APIs)

Misformats queries, can’t
fix execution errors

Never sees real APl responses
or error messages

Code Agents

Outputs code that fails
runtime tests

No reward for successful
execution

Retrieval-Augmented QA

Retrieves irrelevant docs;
hallucinates

No supervision from retrieval
success/failure

Conversational Agents

Breaks down over long
dialogs; repeats mistakes

No turn-level feedback or
satisfaction signal

Scientific Agents

Suggests infeasible
experiments

Never observes outcomes or
experiment results

Embodied / Game Agents

Knows rules but can’t win

No experience-based learning
from rewards

Why fine-tune agents?

LLMSs trained on static Internet data struggle with real-world, interactive
tasks

* Agents (tool users, planners, retrievers) generate rich experience
traces unavailable in pretraining

* Real-world improvement loop:
Deploy - Observe - Reward - Update

Key idea: Environment provides the missing signal for continual learning

Tool-using agents: APls, databases, ...

Example: A text-to-SQL assistant like “Generate SQL for this query”
works fine on benchmark data, but:

e fails when it encounters an unfamiliar schema or proprietary function
(LEFT JOIN inventory vs. JOIN inv_table)

* does not know when to retry or how to parse an error message from
a real database

e cannot adapt to reward signals like execution success or query latency

Static-data limitation: Training on example pairs does not expose the
model to feedback loops or action—outcome dynamics. It never learns
that syntax errors = penalty, correct execution - reward.

Code-executing or debugging agents

Example: A code-writing model may output syntactically valid code but
repeatedly fail runtime tests (e.g., off-by-one errors, undefined
variables). As a static model it has no mechanism to:

* Re-run code, see failures, and adjust strategy

* Prefer code that passes tests over code that merely “looks right”

Reinforcement Learning (RL)-based adaptation can be a solution

* Training from execution rewards teaches it to explore, test, and self-
correct: the idea behind DeepSeek-R1 and Agent Lightning’s multi-
step credit assighment.

Retrieval-augmented generation (RAG) agents

Example: A RAG system answering “What are the latest results on
superconducting hydrides?” might:

* Retrieve irrelevant documents due to query mis-formulation
* Produce confident but hallucinated summaries

Static LLMs fail because:

* They’re trained to predict text, not to optimize retrieval relevance or
factuality

* They have no gradient signal from “did this retrieval actually help
answer the question?”

Conversational agents in long-horizon interactions

* Example: A customer-service chatbot can generate fluent single
replies, but breaks down when:
* It needs to maintain consistent memory across 10-20 turns

* It misinterprets user feedback (e.g., “That didn’t help”)
* It can’t adapt its strategy after repeated failures

e Static corpus problem: No natural signal for turn-level success,
conversation satisfaction, or task completion

Scientific or experimental agents

* A chemistry-design agent proposes a synthesis plan that is infeasible
when run in the lab, or doesn’t adjust when the experiment yields
unexpected results

e Static pretraining lacks closed-loop experience with experimental
outcomes; hence the push toward real-world fine-tuning from
observed results

Game-playing or embodied agents

* Example: An LLM describing “how to play chess” doesn’t learn to win
games

* Winning requires trial-and-error reward feedback

* This is why systems like OpenPipe/ART and Agent Lightning treat the
agent’s world as an environment with rewards

Methods for correcting limitations of static data

Challenge

RL Solution

Example Framework

No feedback loop

Collects environment
rewards - updates model

Agent Lightning, ART

No credit assignment

Decomposes multi-turn
traces into transitions

LightningRL hierarchical
policy

No adaptation

Iteratively improves via
rollout - reward - update

OpenPipe / ART pipelines

No intermediate signals

Automatic Intermediate
Rewarding (AIR)

Agent Lightning client
runtime

Long-horizon tasks

Policy learning across
multiple steps

Hierarchical RL / GRPO /
PPO

Static prompts

Optimizes prompts or
examples from data

DSPy teleprompters

Summary

Challenge

Why static data fails

What RL fixes

Action-dependent
outcomes

No feedback loop in
text corpora

Reward from
environment outcomes

Error recovery

No notion of “try -
fail - retry”

Credit assignment over
segquences

Long-horizon
consistency

Training truncates
context

Policy learning across
steps

Real-world
variation

Internet text #
dynamic tools/APIs

Experience-driven
adaptation

OpenPipe / ART: Agent Reinforcement Trainer

* Core concepts

* “OpenPipe” is a middleware for reinforcement tuning of agents, providing
interfaces for reward collection, logging, and evaluation

* ART (Agent Reinforcement Trainer) abstracts away infrastructure, connecting
LLMs, environments, and reward models

» Supports multi-episode training, rollout—train cycles, and integration with RL
frameworks like Hugging Face’s TRL or Microsoft’s VeRL

* Key contribution: makes RL-style fine-tuning operational for deployed
agents, not just isolated models

Agent Lightning: RL for any agent

e Core ideas:

* Training—Agent Disaggregation: separates agent execution (client) from RL training
(server)

* Unified Data Interface: every LLM/tool call logged as (input, output,
reward) transition.

* LightningRL: hierarchical RL method compatible with PPO/GRPO/REINFORCE++ (no
masking, no DAG parsing).

* Automatic Intermediate Rewarding (AIR): converts system telemetry (e.g., tool
success) into dense rewards.

e Example: training a calculator-using MathQA agent or text-to-SQL
workflow; each tool call becomes a transition used for policy optimization.

* Notes:

- Enables fine-tuning without code modification of existing agents (LangChain,
AutoGen, etc.)
—> Bridges research RL frameworks (like VeRL) with real production agents.

ART Vs

. Agent Lightning

Aspect ART / OpenPipe Agent Lightning
Training loop Algorithm + data interface + system
Focus . : : :
orchestration and logging integration
Unified (state, tion,
Data model | Agent episodes with rewards (sta S, actbion
reward) transitions
Flexibility Works with various RL Works with any agent architecture
frameworks
: Standardized RL infra for _ :
Innovation Decoupled training—execution + AIR

agents

Training Trajectories

AG ENT
LIGHTNING

Agent customized

by the user Updated Models

& ®)

Figure 1: Overview of Agent Lightning, a flexible and extensible framework that enables reinforcement

learning of LLMs for ANY Al agents.

Reinforcement
Learning Training
Engine for LLMs

For example, Math QA

1) Algebraic Manipulation
* Problem: If x = 4 and y = 2x — 3, compute (x? —y2)/(x — y).

* Solution reasoning:
y=2(4)-3=5
x?—y?=(16-25)=-9
x—y=-1
- Result=9
2) Geometry / Trigonometry
* Problem: A right triangle has sides of lengths 3 and 4. Find sine of larger acute angle

* Solution reasoning:
Hypotenuse =5
sin(B) = opposite/hypotenuse = 4/5 = 0.8

12
3) “Ifa = % and b = 7, compute (a‘z <+ \/5) — ﬂ Return a single number.”

Agent Lightning and Math QA

* Agent implementation: Single-LLM workflow that (a) plans, (b) issues
calculator calls, (c) integrates results, (d) answers

* Tool: calculator(expr: string) -> number (stateless).
AIR (Automatic Intermediate Rewarding) will mark a tool call “valid/invalid”
to yield intermediate rewards (format OK, tool executed, syntactically valid)

* Terminal reward: exact-match on numeric answer (1.0 if correct, else 0.0)

* LightningRL converts each LLM call into an action, does simple credit
assignment (same return to each action by default), then applies a single-
turn RL loss (e.g., GRPO/PPO) token-wise on each call’s output

Ground-truth answer (for reference)

12

“If a = % and b = 7, compute (a_2 + \/5) — ﬂ Return a single number.”

* Compute stepwise (what the calculator is for):

- ()7

* Vb =7
L1z _12 g
3-4 12

* So the target is:

25

: +\/7_1:19_6+\/7m1.777...+2.64575...z4.42275

Agent execution timeline

* Transition T1 — Plan & Compute (3/5)"(-2)
LLM output: {"expr":"(3/5)*(-2)"}
Tool: 2.7778
AIR reward = 0.15

 Transition T2 — Compute sqrt(7)
Tool: 2.6458
AIR reward = 0.15

 Transition T3 — Compute 12/(3*4)
Tool: 1
AIR reward = 0.15

* Transition T4 — Combine & Answer
LLM: {"answer":"(25/9)+sqrt(7)-1=4.4228"}
Terminal reward = 1.0 (correct)

e Total ReturnR = 1.45

Automatic Intermediate Rewarding (AIR)
enables the assignment of intermediate
rewards to transitions based on system

monitoring signals (such as tool call return
statuses)

T1 computation in more detail

* Input_1 (state - observation):
System: You are a math solver. Use the calculator tool for exact arithmetic.
User: If a=3/5 and b=7, compute (a”-2 + sqgrt(b)) - 12/(3*4).
Respond in JSON with fields: {"plan": "...", "next_action": "compute" | "answer",
"expr": "..."}

e LLM Output_1 (action al):
{"plan":"Compute a”-2, compute sqrt(7), compute 12/(3*4), then combine.",
"next_action":"compute","expr":"(3/5)*(-2)"}

* AIR intermediate reward r_1 (format): +0.05 if JSON parseable & fields
present

* AIR intermediate reward r_1 (tool-eligibility): +0.05 if expr is calculator-
valid (simple static check)

Unified data trace

* Logged transitions (simplified JSONL):
{"t":1, "input":"Userlnput", "output":"(3/5)*(-2)", "reward":0.15}
{"t":2, "input":"...ToolResult1...", "output":"sqrt(7)", "reward":0.15}
{"t":3, "input":"...ToolResult2...", "output":"12/(3*4)", "reward":0.15}
{"t":4, "input":"...ToolResult3...", "output":"Answer=4.4228", "reward":1.0}

* Observations
e Each LLM call = one action in the Markov decision process
* No masking, no concatenation: just clean transitions for RL

LightningRL Optimization Flow

* Credit Assignment: Assign per-step or uniform return to each transition

* Token-Level Optimization: Apply single-turn RL loss (GRPO/ PPO/
REINFORCE++)

* Batching: Transitions grouped by task for advantage estimation
 AIR: Provides dense shaping rewards to accelerate learning

* Benefits:
* Modular and scalable (no coupling between agent logic & RL engine)
* Works across AutoGen, LangChain, or custom agents

Policy-gradient RL for language models

* Policy-gradient methods optimize a parameterized model myhera(a | S)
(the LLM) to increase expected reward. The general objective is:

V@](H) = [Es,a~n9 [VH log Tty (a | S) A(S’ a)]:

where A(s,a) (“advantage”) measures how much better the sampled
action’s reward is than average

* In LLM fine-tuning,
 state s = prompt or context
* action a = the generated text
* reward r = numeric score (helpfulness, correctness, etc.)

* advantage A = signal telling the model which responses were better

Policy gradient methods used in Agent Lightning
* Proximal Policy Optimization (PPO): take conservative updates so
new policy does not drift too far from previous

* Group Relative Policy Optimization (GRPO): Group several model
outputs for same prompt/task, normalize rewards. Default.

* REINFORCE++: Simplest; no critic, no grouping
Methods differ only in how they compute A(s,a)

Feature PPO GRPO REINFORCE++
Critic network yes none none
Advantage baseline Value function Group mean / std | Batch mean
Stability Very high Moderate Lower
Compute cost Highest Medium Lowest

Use in Agent Lightning | Supported but heavy | Default choice Optional

Training results

 Dataset: Calc-X + Base Model: Llama-3.2-3B-Instruct
* Smooth, consistent improvement in both train & test reward curves

* Improved accuracy in symbolic + numeric tasks

* Robust handling of multi-turn reasoning with tool invocations

0.9

0.8

Rewards
© o o o o o
N w Sy w o ~N

<3
-

o
o

Train Rewards on Calculator

—e— ours

!
| l
H|""” um|, llll ¢ |‘ul' " d y" "In" u. “]'l‘

50 100 150 200 250 300 350 400 450
Steps

(a) Train reward

Rewards

0.8

0.7

o
)

o
]

o
IS

o
w

o
N

=
a

o
<)

Test Rewards on Calculator

—e— ours

0 64 128 192 256 320 384 448
Steps

(b) Test reward

Agent Lightnhing summary

* Transition-based modeling enables fine-grained RL on complex
workflows

e Automatic Intermediate Rewarding (AIR) mitigates sparse reward
problem

* LightningRL reuses efficient single-turn RL across multi-step, tool-
augmented agents

* Training-Agent Disaggregation (server <> client) allows zero agent code
modification

* Outcome: Agent Lightning continuously improves tool-using math
agents, achieving both reliability and scalability

Era of Simulation Era of Human Data Era of Experience

Welcome to the Era of Experience

AlphaZero

David Silver, Richard S. Sutton*

ChatGPT

Atari

Attention on Reinforcement Learning

2014 2016 2018 2020 2022 2024
Year
Our contention is that incredible new capabilities will arise once the full potential of experiential learning
is harnessed. This era of experience will likely be characterised by agents and environments that, in addition
to learning from vast quantities of experiential data, will break through the limitations of human-centric Al
systems in several further dimensions:

Agents will inhabit streams of experience, rather than short snippets of interaction.

Their actions and observations will be richly grounded in the environment, rather than interacting via
human dialogue alone.

Their rewards will be grounded in their experience of the environment, rather than coming from human
prejudgement.

They will plan and/or reason about experience, rather than reasoning solely in human terms

9ouabijejur uewnyadns

