Al Agents for Science

Lecture 14, November 12
Finetuning and reinforcement learning

Instructor: lan Foster
TA: Alok Kamatar

= CMSC 35370 -- https://agents4science.github.io
FresEn cefeniey it sl https://canvas.uchicago.edu/courses/67079

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

Reinforcement learning papers
Adapting agents with reinforcement learning and real-world training.

OpenPipe/ART: Agent Reinforcement Trainer

Agent Lightning: Train ANY Al Agents with Reinforcement Learning

https://github.com/OpenPipe/ART
https://arxiv.org/abs/2508.03680

Recall: An agent is ...

* An agent is a system that:
* Senses (reads inputs, environment, or tool responses)
* Plans (decides what to do next)
* Acts (calls a tool)
* Learns (updates state)

* |ts operations are governed by policy that governs how it chooses
actions in response to states (its current context)

* An LLM/RM may be used in various contents

Possible roles of LLMs/RMs in agents

Stage |Role / Function Possible LLM Involvement

Sense Observe the environment: read user LLM interprets or summarizes current
inputs, tool outputs, or APl responses | context (e.g., “What did the tool return?”)

Plan Decide what to do next: which subgoal | LLM generates next-step plans or chain-of-
or tool to use, how to proceed thought reasoning

Act Execute chosen step: call a function, LLM issues structured commands or final
run a tool, or generate a response answers

Learn Improve based on results, rewards, or | RL or prompt optimization adjusts LLM
feedback behavior or policy

Improving agent performance

* Goal: alter agent behavior, e.g., improves some aspect of performance

* Generally we want to do this by training, which may involve:

* LLM fine-tuning: Presenting agent LLM with structured data (e.g., prompt/
answer pairs) and adjusting LLM parameters to increase match to answer

* Reinforcement learning: Running the agent in a real or simulated environment
and adjusting aspects of the agent implementation (LLM, other policy
components) to improve the reward obtained

* Training can allow the agent to:
* Choose better next actions (more optimal tool calls, reasoning steps, responses)
* Improve reliability and efficiency over repeated interactions
* Learn from experience, not just static data

Levels at which performance may be improved

Level Object being improved | Typical method What changes
. : Fine-tuning

Model (LLM) A single neural policy (supervised or RL- Model parameters or

that maps text - text adapters

based)

A system that uses one | Training loop/RL Which sub-actions or calls
Agent :
. or more LLMs plus tools, | algorithm (e.g., PPO, |the agent chooses, and
implement.

memory, control logic

GRPO, hierarchical RL)

how it coordinates them

Ecosystem /
runtime

The deployed
environment where
agents act and learn

Experience collection,
reward shaping,
orchestration

Datasets, trajectories, or
policies for multiple
agents

Recall: Fine tuning, in brief

Fine tuning refines a pre-trained model’s weights on domain-specific or task-
specific examples to improve accuracy, style, or reasoning
* Collect (prompt = ideal response) pairs
* Train with gradient descent on supervised or RL objectives to update model weights
* Validate and deploy new model checkpoint

Type Purpose

Supervised fine-tuning (SFT) Teach format, reasoning, tone
Instruction tuning Align with human prompts

Domain tuning Specialize to specific domains
LoRA / PEFT Lightweight, adapter-based updates

Fine-tuning paradigms

Type

Description

Typical Use

Supervised fine-tuning
(SFT)

Train model on labeled examples
of desired input—>output

Instruction tuning

Reinforcement learning
(RLHF/RLAIF)

Optimize model by reward
feedback

Alignment

Agent fine-tuning

Optimize entire agent workflow
using task success signals

Adaptive agents

Fine tuning, RL, agents

* Fine-tuning is a technique that changes the LLM itself.
* Can be supervised (SFT, instruction tuning) or reinforcement-based (RLHF, GRPO, PPO)

* Its output is an improved model checkpoint or adapter

* Reinforcement Learning is a training paradigm that can operate inside or around an agent

* When the RL algorithm’s gradient flows into the LLM weights - that’s RL-based fine-
tuning

* When RL updates only the policy logic (e.g., planner, routing, parameter selection) -
it’s agent-level training without touching model weights.
* Agent frameworks (like Agent Lightning or ART) handle the outer loop: how experience is
gathered, rewards computed, and updates applied.
* Fine-tuning (of LLM weights) is one possible update target.

* Prompt optimization, rule tuning, or memory shaping are others.

Reinforcement learning

Reinforcement learning (RL), which has driven recent advances in reasoning
models such as DeepSeek- R1 and Kimi k1.5, offers a powerful paradigm for
optimizing LLMs in agentic scenarios. While supervised learning requires
detailed step-by-step annotations—which are scarce and costly for
complex interactive tasks—RL relies on outcome-based reward signals.
This eliminates the need for task-specific curated data and allows agents to
learn desirable behaviors directly from environment feedback across
diverse tasks. Moreover, the trial-and-error nature of RL closely mirrors
how humans acquire problem-solving skills, enabling models to learn
action policies grounded in deployment contexts. This capability opens up
the potential for transforming LLM-generated text tokens into real-world
actions, making RL a natural fit for training models in agent-based systems.

Reinforcement learning

* Problems involving an agent interacting with an environment, which
provides numeric reward signals

* Goal: Learn how to take actions in order to maximize reward

environment

new state

agent

Fine tuning vs. reinforcement learning

When to Fine-Tune

When to Apply RL

You have high-quality labeled data

Labels are unavailable but you can define
a reward (success metric, correctness, user satisfaction)

You need consistent, static behavior
(e.g., summarization style)

You need adaptive, goal-directed behavior (e.g., tool
use, planning, dialogue).

Cost of annotation is lower than
cost of rollout

Cost of environment interaction is lower than mass
labeling

You want fast, repeatable training
cycles.

You want continual improvement from real-world
feedback

Why fine-tune LLMs?

LLMs trained on static Internet data struggle with real-world,
interactive tasks, e.g.:

* Tool-using agents

* Code-executing or debugging agents

* Retrieval-augmented generation (RAG) agents

* Conversational agents in long-horizon interactions
* Scientific or experimental agents

* Game-playing or embodied agents

Why static LLMs struggle in the real world

Domain

Example Failure

Why Static Data Fails

Tool Use (SQL, APIs)

Misformats queries, can’t
fix execution errors

Never sees real APl responses
or error messages

Code Agents

Outputs code that fails
runtime tests

No reward for successful
execution

Retrieval-Augmented QA

Retrieves irrelevant docs;
hallucinates

No supervision from retrieval
success/failure

Conversational Agents

Breaks down over long
dialogs; repeats mistakes

No turn-level feedback or
satisfaction signal

Scientific Agents

Suggests infeasible
experiments

Never observes outcomes or
experiment results

Embodied / Game Agents

Knows rules but can’t win

No experience-based learning
from rewards

Why fine-tune agents?

LLMSs trained on static Internet data struggle with real-world, interactive
tasks

* Agents (tool users, planners, retrievers) generate rich experience
traces unavailable in pretraining

* Real-world improvement loop:
Deploy - Observe - Reward - Update

Key idea: Environment provides the missing signal for continual learning

Tool-using agents: APls, databases, ...

Example: A text-to-SQL assistant like “Generate SQL for this query”
works fine on benchmark data, but:

e fails when it encounters an unfamiliar schema or proprietary function
(LEFT JOIN inventory vs. JOIN inv_table)

* does not know when to retry or how to parse an error message from
a real database

e cannot adapt to reward signals like execution success or query latency

Static-data limitation: Training on example pairs does not expose the
model to feedback loops or action—outcome dynamics. It never learns
that syntax errors = penalty, correct execution - reward.

Code-executing or debugging agents

Example: A code-writing model may output syntactically valid code but
repeatedly fail runtime tests (e.g., off-by-one errors, undefined
variables). As a static model it has no mechanism to:

* Re-run code, see failures, and adjust strategy

* Prefer code that passes tests over code that merely “looks right”

Reinforcement Learning (RL)-based adaptation can be a solution

* Training from execution rewards teaches it to explore, test, and self-
correct: the idea behind DeepSeek-R1 and Agent Lightning’s multi-
step credit assighment.

Retrieval-augmented generation (RAG) agents

Example: A RAG system answering “What are the latest results on
superconducting hydrides?” might:

* Retrieve irrelevant documents due to query mis-formulation
* Produce confident but hallucinated summaries

Static LLMs fail because:

* They’re trained to predict text, not to optimize retrieval relevance or
factuality

* They have no gradient signal from “did this retrieval actually help
answer the question?”

Conversational agents in long-horizon interactions

* Example: A customer-service chatbot can generate fluent single
replies, but breaks down when:
* It needs to maintain consistent memory across 10-20 turns

* It misinterprets user feedback (e.g., “That didn’t help”)
* It can’t adapt its strategy after repeated failures

e Static corpus problem: No natural signal for turn-level success,
conversation satisfaction, or task completion

Scientific or experimental agents

* A chemistry-design agent proposes a synthesis plan that is infeasible
when run in the lab, or doesn’t adjust when the experiment yields
unexpected results

e Static pretraining lacks closed-loop experience with experimental
outcomes; hence the push toward real-world fine-tuning from
observed results

Game-playing or embodied agents

* Example: An LLM describing “how to play chess” doesn’t learn to win
games

* Winning requires trial-and-error reward feedback

* This is why systems like OpenPipe/ART and Agent Lightning treat the
agent’s world as an environment with rewards

Methods for correcting limitations of static data

Challenge

RL Solution

Example Framework

No feedback loop

Collects environment
rewards - updates model

Agent Lightning, ART

No credit assignment

Decomposes multi-turn
traces into transitions

LightningRL hierarchical
policy

No adaptation

Iteratively improves via
rollout - reward - update

OpenPipe / ART pipelines

No intermediate signals

Automatic Intermediate
Rewarding (AIR)

Agent Lightning client
runtime

Long-horizon tasks

Policy learning across
multiple steps

Hierarchical RL / GRPO /
PPO

Static prompts

Optimizes prompts or
examples from data

DSPy teleprompters

Summary

Challenge

Why static data fails

What RL fixes

Action-dependent
outcomes

No feedback loop in
text corpora

Reward from
environment outcomes

Error recovery

No notion of “try -
fail - retry”

Credit assignment over
segquences

Long-horizon
consistency

Training truncates
context

Policy learning across
steps

Real-world
variation

Internet text #
dynamic tools/APIs

Experience-driven
adaptation

OpenPipe / ART: Agent Reinforcement Trainer

* Core concepts

* “OpenPipe” is a middleware for reinforcement tuning of agents, providing
interfaces for reward collection, logging, and evaluation

* ART (Agent Reinforcement Trainer) abstracts away infrastructure, connecting
LLMs, environments, and reward models

» Supports multi-episode training, rollout—train cycles, and integration with RL
frameworks like Hugging Face’s TRL or Microsoft’s VeRL

* Key contribution: makes RL-style fine-tuning operational for deployed
agents, not just isolated models

Agent Lightning: RL for any agent

e Core ideas:

* Training—Agent Disaggregation: separates agent execution (client) from RL training
(server)

* Unified Data Interface: every LLM/tool call logged as (input, output,
reward) transition.

* LightningRL: hierarchical RL method compatible with PPO/GRPO/REINFORCE++ (no
masking, no DAG parsing).

* Automatic Intermediate Rewarding (AIR): converts system telemetry (e.g., tool
success) into dense rewards.

e Example: training a calculator-using MathQA agent or text-to-SQL
workflow; each tool call becomes a transition used for policy optimization.

* Notes:

- Enables fine-tuning without code modification of existing agents (LangChain,
AutoGen, etc.)
—> Bridges research RL frameworks (like VeRL) with real production agents.

ART Vs

. Agent Lightning

Aspect ART / OpenPipe Agent Lightning
Training loop Algorithm + data interface + system
Focus . : : :
orchestration and logging integration
Unified (state, tion,
Data model | Agent episodes with rewards (sta S, actbion
reward) transitions
Flexibility Works with various RL Works with any agent architecture
frameworks
: Standardized RL infra for _ :
Innovation Decoupled training—execution + AIR

agents

Training Trajectories

AG ENT
LIGHTNING

Agent customized

by the user Updated Models

& ®)

Figure 1: Overview of Agent Lightning, a flexible and extensible framework that enables reinforcement

learning of LLMs for ANY Al agents.

Reinforcement
Learning Training
Engine for LLMs

For example, Math QA

1) Algebraic Manipulation
* Problem: If x = 4 and y = 2x — 3, compute (x? —y2)/(x — y).

* Solution reasoning:
y=2(4)-3=5
x?—y?=(16-25)=-9
x—y=-1
- Result=9
2) Geometry / Trigonometry
* Problem: A right triangle has sides of lengths 3 and 4. Find sine of larger acute angle

* Solution reasoning:
Hypotenuse =5
sin(B) = opposite/hypotenuse = 4/5 = 0.8

12
3) “Ifa = % and b = 7, compute (a‘z <+ \/5) — ﬂ Return a single number.”

Agent Lightning and Math QA

* Agent implementation: Single-LLM workflow that (a) plans, (b) issues
calculator calls, (c) integrates results, (d) answers

* Tool: calculator(expr: string) -> number (stateless).
AIR (Automatic Intermediate Rewarding) will mark a tool call “valid/invalid”
to yield intermediate rewards (format OK, tool executed, syntactically valid)

* Terminal reward: exact-match on numeric answer (1.0 if correct, else 0.0)

* LightningRL converts each LLM call into an action, does simple credit
assignment (same return to each action by default), then applies a single-
turn RL loss (e.g., GRPO/PPO) token-wise on each call’s output

Ground-truth answer (for reference)

12

“If a = % and b = 7, compute (a_2 + \/5) — ﬂ Return a single number.”

* Compute stepwise (what the calculator is for):

- ()7

* Vb =7
L1z _12 g
3-4 12

* So the target is:

25

: +\/7_1:19_6+\/7m1.777...+2.64575...z4.42275

Agent execution timeline

* Transition T1 — Plan & Compute (3/5)"(-2)
LLM output: {"expr":"(3/5)*(-2)"}
Tool: 2.7778
AIR reward = 0.15

 Transition T2 — Compute sqrt(7)
Tool: 2.6458
AIR reward = 0.15

 Transition T3 — Compute 12/(3*4)
Tool: 1
AIR reward = 0.15

* Transition T4 — Combine & Answer
LLM: {"answer":"(25/9)+sqrt(7)-1=4.4228"}
Terminal reward = 1.0 (correct)

e Total ReturnR = 1.45

Automatic Intermediate Rewarding (AIR)
enables the assignment of intermediate
rewards to transitions based on system

monitoring signals (such as tool call return
statuses)

T1 computation in more detail

* Input_1 (state - observation):
System: You are a math solver. Use the calculator tool for exact arithmetic.
User: If a=3/5 and b=7, compute (a”-2 + sqgrt(b)) - 12/(3*4).
Respond in JSON with fields: {"plan": "...", "next_action": "compute" | "answer",
"expr": "..."}

e LLM Output_1 (action al):
{"plan":"Compute a”-2, compute sqrt(7), compute 12/(3*4), then combine.",
"next_action":"compute","expr":"(3/5)*(-2)"}

* AIR intermediate reward r_1 (format): +0.05 if JSON parseable & fields
present

* AIR intermediate reward r_1 (tool-eligibility): +0.05 if expr is calculator-
valid (simple static check)

Unified data trace

* Logged transitions (simplified JSONL):
{"t":1, "input":"Userlnput", "output":"(3/5)*(-2)", "reward":0.15}
{"t":2, "input":"...ToolResult1...", "output":"sqrt(7)", "reward":0.15}
{"t":3, "input":"...ToolResult2...", "output":"12/(3*4)", "reward":0.15}
{"t":4, "input":"...ToolResult3...", "output":"Answer=4.4228", "reward":1.0}

* Observations
e Each LLM call = one action in the Markov decision process
* No masking, no concatenation: just clean transitions for RL

LightningRL Optimization Flow

* Credit Assignment: Assign per-step or uniform return to each transition

* Token-Level Optimization: Apply single-turn RL loss (GRPO/ PPO/
REINFORCE++)

* Batching: Transitions grouped by task for advantage estimation
 AIR: Provides dense shaping rewards to accelerate learning

* Benefits:
* Modular and scalable (no coupling between agent logic & RL engine)
* Works across AutoGen, LangChain, or custom agents

Policy-gradient RL for language models

* Policy-gradient methods optimize a parameterized model myhera(a | S)
(the LLM) to increase expected reward. The general objective is:

V@](H) = [Es,a~n9 [VH log Tty (a | S) A(S’ a)]:

where A(s,a) (“advantage”) measures how much better the sampled
action’s reward is than average

* In LLM fine-tuning,
 state s = prompt or context
* action a = the generated text
* reward r = numeric score (helpfulness, correctness, etc.)

* advantage A = signal telling the model which responses were better

Policy gradient methods used in Agent Lightning
* Proximal Policy Optimization (PPO): take conservative updates so
new policy does not drift too far from previous

* Group Relative Policy Optimization (GRPO): Group several model
outputs for same prompt/task, normalize rewards. Default.

* REINFORCE++: Simplest; no critic, no grouping
Methods differ only in how they compute A(s,a)

Feature PPO GRPO REINFORCE++
Critic network yes none none
Advantage baseline Value function Group mean / std | Batch mean
Stability Very high Moderate Lower
Compute cost Highest Medium Lowest

Use in Agent Lightning | Supported but heavy | Default choice Optional

Training results

 Dataset: Calc-X + Base Model: Llama-3.2-3B-Instruct
* Smooth, consistent improvement in both train & test reward curves

* Improved accuracy in symbolic + numeric tasks

* Robust handling of multi-turn reasoning with tool invocations

0.9

0.8

Rewards
© o o o o o
N w Sy w o ~N

<3
-

o
o

Train Rewards on Calculator

—e— ours

!
| l
H|""” um|, llll ¢ |‘ul' " d y" "In" u. “]'l‘

50 100 150 200 250 300 350 400 450
Steps

(a) Train reward

Rewards

0.8

0.7

o
)

o
]

o
IS

o
w

o
N

=
a

o
<)

Test Rewards on Calculator

—e— ours

0 64 128 192 256 320 384 448
Steps

(b) Test reward

Agent Lightnhing summary

* Transition-based modeling enables fine-grained RL on complex
workflows

e Automatic Intermediate Rewarding (AIR) mitigates sparse reward
problem

* LightningRL reuses efficient single-turn RL across multi-step, tool-
augmented agents

* Training-Agent Disaggregation (server <> client) allows zero agent code
modification

* Outcome: Agent Lightning continuously improves tool-using math
agents, achieving both reliability and scalability

Era of Simulation Era of Human Data Era of Experience

Welcome to the Era of Experience

AlphaZero

David Silver, Richard S. Sutton*

ChatGPT

Atari

Attention on Reinforcement Learning

2014 2016 2018 2020 2022 2024
Year
Our contention is that incredible new capabilities will arise once the full potential of experiential learning
is harnessed. This era of experience will likely be characterised by agents and environments that, in addition
to learning from vast quantities of experiential data, will break through the limitations of human-centric Al
systems in several further dimensions:

Agents will inhabit streams of experience, rather than short snippets of interaction.

Their actions and observations will be richly grounded in the environment, rather than interacting via
human dialogue alone.

Their rewards will be grounded in their experience of the environment, rather than coming from human
prejudgement.

They will plan and/or reason about experience, rather than reasoning solely in human terms

9ouabijejur uewnyadns

