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Nov 2023 – multiple breakthroughs in 
materials design



AI can “act” as good as IMO gold medalist! 



Sakana AI: Towards open-ended scientific discovery 



AI co-scientists represent a real advance in 
agentic systems 
• Enabling scientific discoveries at scale 

• New ways to connect and correlate across knowledge and disciplines 
• Modern workflows of developing connections across fields at scale 

• New tools that go beyond traditional scientific discovery 
• Altering how scientific workflows are evolving 
• Towards greater autonomy and reproducibility 

• Real concerns as well: 
• Ethical and moral concerns towards unreliable research outcomes 
• Vanishing boundary between “actual” novel knowledge vs. recapitulating 

similar principles 



Frame for this class… 
• What if, soon, we have access to:

• an able “scientific” assistant that can help 
with day-to-day tasks?

• a “thinker” that can comment and critique 
ideas?

• What if, soon, we have access to: 
• massive “industrial scale facilities”, where 

experiments are designed through 
conceptual inputs? 

• Assembly across facilities can collectively 
solve measurement challenges? 

• How would we think of scientific 
hypotheses? 
• What scientific questions would you 

think of? 



Learning objectives

• Core Goals: 
• Understand what AI co-scientists are, 
• how they work, and 
• see concrete examples across three major domains

• Extended / Stretch Goals: 
• Analyze the architectural components, 
• evaluate different reasoning approaches, and 
• assess technical limitations



Accelerating discovery using AI co-scientists
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Generative models automatically 
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Is Science Getting Harder?



Is Science getting harder?



Why is science “getting harder”?
1. Low-hanging fruit is gone. Foundational phenomena (e.g., electromagnetic waves, the genetic code) 

were discoverable with modest tools; today’s frontiers (quantum error correction, dark-energy surveys) 
require billion-dollar instruments and deeper mathematics.

2. Complexity & combinatorics. Biologists must interrogate millions of regulatory elements; materials 
scientists search 10¹²-scale composition spaces. Search budgets grow faster than “eureka” moments.

3. Team-size–coordination drag. Average author count rose from ~1.8 (1950s) to ~6.2 (2020s). Large 
teams excel at development, but small teams create the most disruptive ideas; the global shift toward 
large consortia statistically tilts the portfolio toward incremental work.

4. Incentive mis-alignment. Career advancement is tied to publication counts, risk-averse grant panels, 
and short-term metrics. Scientists optimise for fundability and publishability, not expected long-run 
impact.

5. Administrative & regulatory overhead. Surveys put PI time spent on compliance/reporting at 30–40 % 
in the US and EU.

6. Information overload. With >4 million articles/year, no human can read the frontier literature without 
algorithmic help; promising cross-field connections are easily missed.

7. Aging scientific workforce. First-R01 age at NIH climbed from ~36 (1980) to ~44 (2023), delaying 
high-risk exploration by early-career scientists.

8. Measurement lags and intangibles. The “productivity J-curve” argues digital & AI investments  show up 
only after complementary workflow changes; some apparent slowdown is accounting illusion.





Scientific Novelty Over Time

Chu and Evans find the top 50 most highly cited papers in 
each year. In red below, they then track the proportion of 
those papers that stay in the top 50 in the next year.



If counting topics is a good way to measure the successful 
growth rate of a field, then this indicates fields are having a 
harder time growing today than in the past.





Fraction of citations to academic papers in patents 
to last 5-years https://mattsclancy.substack.com/p/science-is-getting-harder

Patents citing older work





Role of AI and Automation



Early macro data hint at a regime shift: the 
Cleveland Fed estimates a 40 % probability that US 
productivity growth has already moved to a higher 
trend post-2023, coincident with generative-AI 
diffusion.   Whether this sticks depends on how 
quickly the scientific enterprise absorbs AI, reforms 
incentives, and scales automated experiments.



AI Improvements Accelerating?





Base scaleup of effective compute
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Decomposing 
drivers of 
progress

https://situational-awareness.ai 
Rough illustration

2-3 OOMs 

1-3 OOMs 

?? OOMs 
Three Research Agendas

1. Scaling up compute to 
Zettacale and beyond – 
compute architecture 

2. Machine Learning 
Efficiencies  -- improving 
parameter and sample 
efficiency 

3. AI methods, ensembles, 
RL, T2 Reasoning, 
Consciousness etc.

Scaling up compute 

Learning Efficiencies

AI methods
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To enable fast training of Trillion parameter models

https://situational-awareness.ai 
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AI as a co-scientist in the scientific 
process
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AI co-scientists are autonomous or semi-autonomous AI 

systems - typically powered by Large Language Models - 

that can conduct complete research workflows: 

hypothesis generation, experiment design and execution, 

data analysis, and even paper writing



Traditional models vs. Co-scientists

Traditional AI Tools AI Co-Scientists
Task-specific, narrow End-to-end workflows

Human-directed, passive Autonomous planning & 
execution

Static knowledge Dynamic learning & adaptation
Single-shot predictions Iterative reasoning loops
No tool use Orchestrates multiple tools





The Autonomy Spectrum 
Generative 
Architect

Independent Researcher: 
Autonomous Research with 

periodic oversight

Collaborator: Shared decision making 
with human oversight

Assistant: Task-specific assistant (ChatGPT)

Most systems 
operate at this 
level of 
autonomy



Key developments

Coscientist (Carnegie Mellon, Nature Dec 
2023): First system to autonomously execute 
complete chemical synthesis from natural 
language to physical product. GPT-4-based 
system controlled robotic liquid handlers, 
achieving 95%+ success rate on palladium-
catalyzed reactions.

GNoME (Google DeepMind, Nov 2023): 
Predicted 2.2 million crystal structures, 
identified 380,000 stable materials - 
including 52,000 graphene-like layered 
compounds (52× previous known 
materials). 736 materials independently 
validated by external labs worldwide.

Insilico Medicine: First AI-
discovered drug (INS018_055 for 
pulmonary fibrosis) entered Phase 
2 trials. Development time: 18 
months vs. 4.5 years 
traditionally, cost: $2.6M vs. 
$430M.

AlphaProof & AlphaGeometry 2 (July 
2024-2025): Progressed to gold medal 
performance at IMO 2024-2025, solving 
problems that only 11% of human 
contestants could solve

Agent Laboratory (Jan 
2025): Automated the entire 
ML research paper pipeline 
with 95.7% success rate 
and 84% cost reduction. 

Google Co-scientist (Feb 2025): 
Three important scientific problem 
domains on which AI “co-scientists” 
could directly contribute to the 
discovery process. 

Sakana AI (Mar 2025): 
Computer science 
conference/ workshop 
accepted papers. Paper2Agent (Jum 2025) 

Paper2Agent is a multi-
agent AI system that 
automatically transforms 
research papers into 
interactive AI agents with 
minimal human input.

The Virtual Lab of AI agents 
designs new SARS-CoV-2 
nanobodies (Jul 2025)



Real-world implementation of AI co-
scientists



Google Co-scientist approach

The scientist 
specifies research 
goals in natural 
language using 
website chat 
interface. They can 
suggest their own 
ideas, proposals, 
or other “prompts” 
as discussed via 
the chat interface. 

- Define research goal: 
    “Suggest novel means of 
targeting WHSC1 using 
biologics”
  - Preferences / Constraints: 
    “Focus on high-binding-affinity 
predictions”
  - Provide feedback on 
candidate interactions

Scientist inputs 

Add/Review idea

Discuss idea

Top-ranked research hypotheses and 
proposals are summarized into a 
research overview and shared with the 
scientist.

Research Proposals + 
Overview

Research Planning

• Compares hypothesis sets 
from docking, co-
evolution, and literature-
based predictions

• Highlights top candidate 
PPIs

• Summarizes limitations 
and open questions

• Research Proposals & 
Overview:

• Presents leading 
hypotheses in a network 
map

• Suggests validation 
experiments 

• Scientist reviews and 
refines scope

Ranking Agent 
Tournaments

Reflection Agent
• Full review with web search
• Simulation review (docking, 

co-evolution)
• Tournament review
• Deep verification (scoring, 

structural plausibility)

Generation Agent
• Literature exploration 

(PubMed, PPI DBs)
• Simulated scientific 

debate

Evolution Agent
• Inspiration related viruses
• Simplification of 

overlapping PPIs
• Research extension for 

novel experiments

Proximity Agent
• Checks pathway 

involvement and 
subcellular localization

• Confirms plausibility within 
human biology

Meta-review Agent
• Checks pathway summary 

of top candidate PPIs
•  Produces research 

overview for the scientist

AI Co-scientist Multi-agent System

Tool Use
• Searching specialized 

DBs, PDB, sequence 
alignment tools

•  Storing interaction data, 
references, prior 
validated sets

Memory/ 
Computing

Agentic RAG

Tool use + HPC 
interfaces

Foundation models

Web-based 
interactions



Disordered proteins span over 30% of the human 
proteome and are important drug targets
• Proteins without a stable tertiary structure:

• High flexibility
• Adaptable binding interfaces

• 65% of these proteins are involved in diseases:
• Cancer
• Neurodegenerative 
• Cardio-vascular
• Diabetes 

• We want to largely target the “undruggable” 
genome as part of this project

• This is not restricted to just human genomes; 
we are looking at viral, bacterial, fungal 
pathogens (for infectious diseases)

Uversky, V., Oldfield, C., Dunker, K., (2008) Annu. Rev. Biophys., 37: 215-246
Liu, J., Faeder, J.R., Camacho, C.J., (2009) Proc. Natl. Acad. Sci. USA, 106 (47): 19189
Dyson, J.H., Wright, P.E., (2015) Nat. Rev. Mol. Cell Biol., 



Using the co-scientist to summarize results… 
Research cycle complete!
Generated 50 total hypotheses
Completed 30 tournament matches

Top 3 drug repurposing hypotheses:

1. A biologic therapy using a cell-penetrating antibody-peptide conjugate is proposed to target and inhibit the SET domain 
of WHSC1, leveraging unique structural features of WHSC1 for cancer therapy. (Elo rating: 1258.4)
 Content snippet: This hypothesis proposes the development of a biologic therapy comprising a cell-penetrating antibody 

conjugated to a peptide that specifically binds and inhibits the SET domain of WHSC1. The antibody...

2. The hypothesis proposes a nanobody-based biologic therapy targeting WHSC1 in cancer, utilizing nuclear localization 
signals and cell-penetrating peptides for specificity and efficient delivery. (Elo rating: 1244.4)
 Content snippet: This improved hypothesis proposes the development of a novel biologic therapy using engineered 

nanobodies fused to a nuclear localization signal (NLS), designed to selectively bind and inhibit the SET...

3. Develop a fusion protein therapy using DARPins and CPP to target WHSC1's SET domain with high specificity and efficient 
cellular/nuclear delivery. (Elo rating: 1231.3)
 Content snippet: This hypothesis proposes the development of a biologic therapy using a bifunctional fusion protein. 

This fusion protein consists of a designed ankyrin repeat protein (DARPins) targeting the SET domain...

Research overview:
Title: Designing a Novel Biologic Therapy for Targeting WHSC1 in Cancer
Executive summary: This research overview outlines strategies for developing a biologic therapy targeting the SET domain of 
the WHSC1 protein, a histone methyltransferase implicated in various cancers. The focus is on designing a therapy that is 
specific, effective, and capable of nuclear penetration, leveraging structural biology techniques, cell-based assays, and 
in vivo models.



The virtual lab architecture



The virtual lab: process
The workflow used to apply the Virtual Lab to nanobody design for 
the KP.3 variant of SARS-CoV-2.
• The workflow begins with the human researcher defining the PI 

and Scientific Critic agents by specifying their Title, Expertise, 
Goal and Role. Then, in an individual meeting, the PI agent 
creates a team of three scientist agents for the project.

• A team meeting discusses the project specification, and the 
agents make decisions such as whether to design antibodies or 
nanobodies.

• In another team meeting, the agents suggest a set of 
computational tools for nanobody design, including ESM, 
AlphaFold-Multimer and Rosetta.

• In a series of individual meetings, the Machine Learning 
Specialist and Computational Biologist, with helpful feedback 
from the Scientific Critic, write code and subsequently improve 
that code for the ESM, AlphaFold-Multimer and Rosetta 
components of the nanobody design workflow. 

• In an individual meeting, the PI agent decides the workflow for 
using the three computational tools to design and select 
mutated nanobody candidates.



The virtual lab: results
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The Sakana AI system



The Sakana AI system can implement a 
variety of ML approaches 



Blooper alert… 



Key components of a multi-agent system for 
scientific discovery

•Tool use 
•Reasoning loops 
•Memory systems 
•Hypothesis generation and validation



Tool use

• Knowledge Tools: arXiv, Semantic Scholar, PubMed, Wikipedia 

• Computational Tools: Python, RDKit (chemistry), molecular 
simulation software, bioinformatics tools, 

• Hardware Tools: Robotic liquid handlers, X-ray diffractometers, 
spectrometers 

• Documentation: API retrieval, protocol libraries



Agentic RAG: Using co-scientist to infer protein 
protein interactions 



Model Context protocol[4]

A “USB port” for Large Language Models
• An open protocol introduced by Anthropic to standardize the 

way backend servers and LLMs talk to each other.
• Prompts

• Reusable prompt templates for clients
• Resources

• Provide documentation, files access, etc.
• Tools

• Enable LLMs to call functions on remote servers.

[4] “Model Context Protocol,” Model Context Protocol. [Online]. Available: https://modelcontextprotocol.io/.

https://modelcontextprotocol.io/


Tool Calling with MCP

1. LLM queries MCP server for 
available tools.

2. MCP server responds with a list 
of available tools.
• List of tools get put into the LLM’s 

context.

3. LLM invokes a desired tool from 
the list.

4. Server responds with the tool’s 
result.

Example: (read-only) filesystem MCP 
Server
1. LLM queries filesystem MCP server.
2. MCP server responds with 3 tools.
—listdir, stat, read

3. LLM chooses to invoke ’listdir()’ tool.
4. Server responds with the result.



Tool Calling with MCP

Development 
Costs

Need to develop every single tool!

Scalability
A LLM can only fit a fixed 

number of tools in context!



Enabling LLM agents with tool calling: 
RAG+MCP server 
• Introduce a framework to dynamically provide tools to LLMs 

via the MCP protocol.
• Incorporate thousands of biomedical tools provided by the 

Galaxy Toolshed project [5].
• Utilize server-side Retrieval Augmented Generation (RAG) 

to scale to arbitrary number of tools without exhausting 
context window limitations.
• 100% MCP protocol compliant, works with Claude Desktop 

and other MCP clients.
[5] D. Blankenberg et al., “Dissemination of scientific software with Galaxy ToolShed,” Genome Biol, vol. 15, no. 2, Feb. 2014, doi: 10.1186/gb4161.

https://doi.org/10.1186/gb4161


• Utilizing Parsl [6], ProxyStore [7], and Academy [8] 
frameworks, our MCP server scales from a single workstation 
to large clusters.

• Enabling multi-agent tool execution

[6] Y. Babuji et al., “Parsl: Pervasive Parallel Programming in Python,” in Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed 
Computing, Phoenix AZ USA: ACM, June 2019, pp. 25–36. doi: 10.1145/3307681.3325400.
[7] J. G. Pauloski et al., “Accelerating Communications in Federated Applications with Transparent Object Proxies,” in Proceedings of the International Conference for 
High Performance Computing, Networking, Storage and Analysis, Denver CO USA: ACM, Nov. 2023, pp. 1–15. doi: 10.1145/3581784.3607047.
[8] J. G. Pauloski, Y. Babuji, R. Chard, M. Sakarvadia, K. Chard, and I. Foster, “Empowering Scientific Workflows with Federated Agents”.

Example execution 
with Claude 

Enabling LLM agents with tool calling: 
RAG+MCP server 

https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3581784.3607047


Integrating Galaxy Toolshed with MCP

• The Galaxy Toolshed[5] contains >10k biomedical tool 
wrappers in a unified schema.

• Contains dependency list, script files, shell command, parameters, 
etc.

[5] D. Blankenberg et al., “Dissemination of scientific software with Galaxy ToolShed,” Genome Biol, vol. 15, no. 2, Feb. 2014, doi: 10.1186/gb4161.

https://doi.org/10.1186/gb4161


Integrating Galaxy Toolshed with MCP

• However, many tool documentations are missing.
• Missing READMEs, descriptions, etc.
• Source READMEs from tool source code, fill in missing fields with 

LLM-generated responses from source READMEs.

• Missing (or outdated) dependencies.
• >3.5k truly valid tools (as of July 22nd )
• Taking Galaxy Toolshed title, description, and 

documentation, create embeddings.



Incorporating RAG with MCP

• The MCP protocol contains 
several “notification” options to 
inform a client on resource 
changes.

• Most importantly, tool changes!

• Use the same mechanism for 
“resources” (data input/output 
files)

1

2

3



Scaling the execution for multi-tools + multi-
agent systems
• Utilizing Academy [8], treat each tool as an “service agent”.

• Local state: Conda environment w/ tool dependencies.
• Actions: Execute tool
• Environment: ProxyStore[7] instance containing input / output files.

• Agents are launched via Parsl[6] , communicating with each 
other and the client (MCP server) via a Redis message 
exchange.

[6] Y. Babuji et al., “Parsl: Pervasive Parallel Programming in Python,” in Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed 
Computing, Phoenix AZ USA: ACM, June 2019, pp. 25–36. doi: 10.1145/3307681.3325400.
[7] J. G. Pauloski et al., “Accelerating Communications in Federated Applications with Transparent Object Proxies,” in Proceedings of the International Conference for 
High Performance Computing, Networking, Storage and Analysis, Denver CO USA: ACM, Nov. 2023, pp. 1–15. doi: 10.1145/3581784.3607047.
[8] J. G. Pauloski, Y. Babuji, R. Chard, M. Sakarvadia, K. Chard, and I. Foster, “Empowering Scientific Workflows with Federated Agents”.

https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3581784.3607047


Architecture



Autonomous Discovery @Argonne
§ The vision

– A system that starts with a high-level 
description of a hypothesis and autonomously 
carries out computational and experimental 
workflows to confirm or reject that hypothesis

– Use of AI in robotics and simulations to close 
the loop on planning, execution, and analysis 
of experiments

§ Builds on 
– AI approaches to planning (multiple steps), 

and integration of results, causality, etc.
– Machine learning/simulation to design and 

predict properties and outcomes
– Automation of experimental protocols 

(robotic steps and workflows)
– Active Learning or RL for selection of next 

experimental targets, etc.

https://github.com/anl-sdl/; https://www.cs.uchicago.edu/~rorymb/  

Rory Butler, 
University of 
Chicago

https://github.com/anl-sdl/
https://github.com/anl-sdl/
https://github.com/anl-sdl/
https://www.cs.uchicago.edu/~rorymb/


MADSci: Modular Autonomous Discovery for Science 

61

Modular & Hackable: Use components a
la carte, or sub your favorites

Powerful & Simple: Granular control + 
experiment definition in <100 lines of 
python/YAML

Scalable: From a single device to 
multiple laboratories

Domain Agnostic: Examples in 
biology, chemistry, quantum

Vendor Agnostic: BYOD - Integrate 
devices from any vendor

Open: Open-source, python-based (In 
Beta)

What is it? What can it do?

Integrate lab autonomy 
with arbitrary 
computational workflows Collect & publish data 

and logs

Monitor & manage 
resources

Monitor experiments & 
manage laboratories via 
dashboard

Coordinate
autonomous workflows
across devices

How does it work?
Where is it?

https://github.com/AD-
SDL/MADSci

Noah Paulson (ANL)

Doga Ozgulbas (ANL) Ryan Lewis (ANL)

Abraham Stroka (ANL) Casey Stone (ANL)

Tobuas Ginsburg 
(ANL)

Mark Hereld (ANL)



A Laboratory-wide implementation of autonomous 
research laboratories (ARL)

62

• Modular, yet 
interoperable set of 
robotic laboratories 

• Focus is on throughput 
improvement for AI 
integration

• Domains covered: 
• Biology/ 

Biochemistry
• Materials Chemistry
• Advanced photon 

source



Embodied Agents for Automated Lab Code Generation

Code 
Action

Execution 
Error Refine Code

Add Code 
Skill

Verify Code

Candidate Code
Memory of 
Tasks

Task Decomp.

Task 
Prompt

Retrieve

Goal 
Tracking

Skills

Memory

Agent



Agentic implementation of laboratory workflows

64



Reasoning loops via Reason + Act (ReAct)

Thought: "I need to synthesize aspirin"
Action: GOOGLE "aspirin synthesis procedure"
Observation: "Found Kolbe-Schmitt process"
Thought: "I need precursor salicylic acid"
Action: DOCUMENTATION "check if salicylic acid available"
Observation: "Available in lab inventory"
Thought: "Now I can design experiment"
Action: EXPERIMENT "mix components according to 
protocol"

• Plan-and-Execute: Generate complete 
plan → Execute → Adjust based on 
results 

• Tournament Evolution: Generate 
multiple candidates → Rank → Evolve 
best → Repeat 

• Tree/Graph Search: Explore multiple 
solution paths in parallel

Think of it as the AI's "inner monologue" - it talks through its reasoning before taking 
actions. There are different search and planning algorithms adapted for scientific 
reasoning. 



Memory Systems: 2 Tier approach

• Short-Term Memory (Context Window):
• 8k to 128k+ tokens (current conversation) 
• Immediate experimental context
• Active hypotheses and results

• Long-Term Memory (External Databases):
• Vector databases for semantic search
• Traditional databases for structured data
• Cross-session learning and knowledge accumulation

https://skymod.tech/why-memory-matters-in-llm-agents-short-term-vs-long-term-memory-architectures/ 
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Hypothesis generation + validation 

• Literature gap analysis: Find what hasn't been studied 

• Simulated debate: Agents argue different positions 

• Analogy transfer: Apply solutions from one domain to another 

• Constraint-based: Generate ideas meeting specific criteria 

• Evolutionary refinement: Mutate and combine existing 
hypotheses



Key gaps, current limitations and open 
challenges in implementing AI co-scientists

1. Literature Review Challenges:
• Highest failure rate across 

autonomous systems
• Difficulty assessing novelty 

and significance
• Hallucination risks when 

synthesizing sources
• Active Research Area: RAG 

improvements, specialized 
search tools

2. Combinatorics Problems:
• Both AlphaProof and OpenAI 

systems struggled with IMO 
combinatorics

• Ad hoc reasoning harder than 
structured domains

• Requires creative leaps beyond 
pattern matching

3. Interpretability:
• Deep learning models are 

"black boxes"
• Difficult to explain why AI 

suggests specific hypotheses
• Regulatory and trust 

challenges

4. Human Expertise Still Essential:
• AI amplifies human capabilities, doesn't replace scientists
• Domain expertise needed to formulate right questions
• Creative problem framing remains human strength
• Ethical oversight and safety validation critical



What We've Learned
• AI co-scientists are already here - making real discoveries in drug discovery (Phase 2 

trials), materials science (2.2M predictions, 736 validated), and mathematics (IMO gold 
medals)

• They work through closed-loop autonomy - hypothesis → experiment → analysis → learning 
→ repeat, with specialized agents handling different tasks

• Massive acceleration - 67-78% timeline reduction, 80-90% cost savings, 10-100× faster 
discovery

• Four key components enable this - tool use, reasoning loops, memory systems, hypothesis 
generation

• Limitations remain - literature review challenges, interpretability issues, clinical validation 
pending, human expertise still essential

• The future is collaborative - AI amplifies human creativity rather than replacing scientists


