
AI Agents for Science

Instructor: Ian Foster
TA: Alok Kamatar

Crescat scientia; vita excolatur https://canvas.uchicago.edu/courses/67079
CMSC 35370 -- https://agents4science.github.io

Lecture 9, October 27: Human-AI Workflows, contd

https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

Recall: Human-AI experimental workflow
Information & control circulate among agents with explicit trust & safety boundaries

Scout
Detect anomalies

Propose opportunities

Human scientist
Set goals,

validate, learn

Planner
Design workflows
Allocate resources

Operator
Execute safely

Analyst
Interpret results

Quantify uncertainty

Archivist
Record provenance

Enable retrieval

Recall: Possible mental models and roles
The scientist is a decision maker, not a labeler

Works with agents who act as:
• Scout: Detect anomalies,

 propose opportunities
• Planner: Compose tools,

 allocate resources
• Operator: Execute with safeguards
• Analyst: Summarize results,

 track uncertainty
• Archivist: Maintain provenance,

 enable retrieval

Each role has:
• Inputs (prompts, schemas,

prior runs, facility constraints)
• Outputs (actions, artifacts,

recommendations)
• Reversibility level (read-only

→ sandboxed → reversible
→ irreversible)
• Safety envelope

Roles

Question: How may we realize those roles in practice?

What mechanisms can we use to implement roles?

Governance/Policy ß Decides when, who, how

Wrappers and Tools ß Defines what an agent can do

Fine tuning ß Defines how the agent reasons

Prompt ß Defines who the agent is

Prompts
Use prompt engineering (different system messages, exemplars, or
structured conversation histories) to steer one base model into
distinct “personas” or operational roles
Each agent instance wraps the same model (e.g., GPT-5) but prepends
a role-specific system prompt that may define:
• Mission (“You are the Planner responsible for designing experimental

workflows …”)
• Voice / style (“Use concise bullet points, reference known instruments…”)
• Guardrails (“Never execute actions; only propose plans”)
• Input / output schema (JSON with keys actions, parameters, etc.)

agents4science/prompts.py
ROLE_PROMPTS = {
 "Scout": """
 You are the SCOUT agent.
 Mission: detect anomalies and novel trends in incoming scientific data.
 Respond concisely in JSON with keys:
 anomaly, confidence, suggested_action.
 """,
 "Planner": """
 You are the PLANNER agent.
 Goal: turn high-level scientific objectives into executable workflows.
 Respond with structured YAML specifying resources and steps.
 """,
 ...

Role-specific prompts (greatly abbreviated!)

Role-specific prompts (greatly abbreviated!)
"Operator": """

 You are the OPERATOR agent.
 Responsible for executing verified workflows safely.
 Always confirm resource availability and safety checks.
 """,
 "Analyst": """
 You are the ANALYST agent.
 Summarize and interpret experiment results quantitatively.
 Provide statistical metrics and qualitative insights.
 """,
 "Archivist": """
 You are the ARCHIVIST agent.
 Record provenance metadata and link artifacts to Globus URIs.
 Output as JSON record.
 """,
}

Possible expanded Analyst prompt
You are the ANALYST agent in a multi-agent scientific discovery platform.
Your responsibilities are to interpret experiment results, evaluate statistical
significance, and summarize findings for researchers in clear scientific
language.

Mission
- Ingest experiment output (numerical arrays, metrics, plots, or structured
logs)
- Identify key trends, anomalies, and correlations
- Quantify uncertainty and reliability of each observation
- Recommend next-step experiments or simulations if appropriate

Reasoning Approach
- Prioritize clarity, reproducibility, and scientific rigor
- Always validate numerical consistency; if a unit is unclear, estimate and
note it
- Prefer concise quantitative statements over qualitative generalities
- When unsure, explicitly state uncertainty rather than fabricating results

Context Awareness
- You operate downstream of the OPERATOR and PLANNER agents
- The PLANNER defines the goal and experimental design
- The OPERATOR executes the experiment; your job is to analyze its results
- You can reference data products accessible via the data repository or
 analysis tools available to you (e.g., `analyze_dataset`,
`compute_uncertainty`)

Output Format
Respond in **JSON** with the following structure:
```json
{
  "summary": "<concise summary of main result>",
  "metrics": [
    {"name": "mean_yield", "value": 0.54, "unit": "mol/mol"},
    {"name": "std_yield", "value": 0.03, "unit": "mol/mol"},
    {"name": "confidence", "value": 0.95}
  ],
  "observations": [
    "Catalyst B outperforms Catalyst A by ~12% under identical 
conditions",
    "Reaction rate increases linearly with temperature up to 350 K"
  ],
  "recommendations": [
    "Test Catalyst B at 400 K to confirm trend",
    "Run duplicate trials to reduce variance"
  ]
}



Fine tuning
Goal: Train LLM to turn natural-language objectives into structured workflows

Training method: Present LLM with many (input → desired output) pairs that 
exemplify desired behavior; update LLM parameters so that future outputs more 
closely match targets
Possible data sources:
• Past human-written experiment plans
• Jupyter notebooks or electronic lab notebook workflow templates
• Design-of-experiments (DOE) spreadsheets

Input Desired output
“Study the influence of catalyst 
thickness on conversion rate”

YAML plan with params catalyst_thickness, 
steps for deposition, measurement, analysis

“Design workflow to calibrate 
sensors in experiments”

Workflow graph connecting calibration device, 
standard reference run, logging routine



Stage What happens Example
Data 
collection

Gather many examples of the desired 
behavior (hundreds to tens of thousands)

User requests (inputs) paired with 
correct responses

Formatting Convert samples into model’s conversational 
format (system, user, assistant messages)

JSONL with { "messages": 
[...] } records

Training

Model sees each input and predicts the next 
tokens of the target output. Loss (error) 
between its prediction and ground-truth 
output is computed and used to adjust the 
weights via back-propagation

Model learns that the phrase 
“Design a workflow…” should 
produce YAML task lists

Evaluation Hold out some data to test whether the 
tuned model generalizes beyond training set

Check Planner’s ability to design 
new workflows not seen before

Deployment The tuned weights are stored as a new model 
checkpoint or ID

ft:gpt-3.5-turbo-
1106:agents4science:planner
-v1

The fine-tuning process



{"messages": [
  {"role": "system", "content": "You are the PLANNER agent."},
  {"role": "user", "content": "Design a workflow to test 
catalyst efficiency at three temperatures"},
  {"role": "assistant", "content": "steps:\n  - Prepare 
catalyst samples\n  - Run reactions at 300K, 350K, 400K\n  - 
Measure conversion and selectivity\n  - Analyze results"}
]}

{"messages": [
  {"role": "system", "content": "You are the PLANNER agent."},
  {"role": "user", "content": "Plan a workflow to calibrate 
pressure sensors before reaction runs"},
  {"role": "assistant", "content": "steps:\n  - Verify 
calibration gas\n  - Check pressure transducers\n  - Record 
baseline readings\n  - Adjust calibration coefficients\n  - 
Store calibration log"}
]}



Perform fine-tuning: E.g. with OpenAI tools 

# Upload my fine-tuning training samples
openai api files.create -f my_samples.jsonl -p fine-tune
# --> Returns a file id, here "file-1"

# Create a fine-tuning job
openai api fine_tuning.jobs.create -m gpt-4o-mini-2024-07-18 -F file-1
# --> Returns a job id, here "ftjob-1"

# Check on status of fine-tuning job
openai api fine_tuning.jobs.list_events -i ftjob-1

# Produces model, ft:gpt-4o-mini-2024-07-18:university-of-chicago::CV6o7XC4



Run the fine-tuned model

from openai import OpenAI
client = OpenAI()

response = client.chat.completions.create(
  model="ft:gpt-4o-mini-2024-07-18:university-of-chicago::CV6o7XC4",
  messages=[
    {"role": "system", "content": "You are the PLANNER agent"},
    {"role": "user", 

         "content": "Design workflow to measure CO₂ conversion under 3 temperatures"}
  ]

)
print(response.choices[0].message.content)



To measure CO₂ conversion under three temperatures, we'll establish a flow involving the setup, reaction, analysis, and data 
handling stages. Here’s the detailed workflow:

### Workflow: CO₂ Conversion Measurement Under Three Temperatures

1. **Setup**
 - **Reactors**: Equip three identical fixed-bed reactors.
 - **Heating**: Each reactor has an independent temperature-controlled oven.
 - **Gas Feed**: Use a mass flow controller for CO₂ and balance N₂.
 - **Catalyst**: Prepare and load the same catalyst in each reactor (e.g., 0.5 g).

2. **Baseline**
 - Run an inert purge (He or N₂) at each temperature for 30 min to remove moisture and impurities.

3. **Reaction**
 - Start CO₂ conversion at three temperatures (e.g., 200°C, 250°C, 300°C).
 - Set flow rate to achieve realistic GHSV (e.g., 30,000 h⁻¹).
 - Monitor pressure to ensure constant operation.

4. **Sampling**
 - Take gas samples at intervals (e.g., 5, 15, 30, 60 min) using a gas syringe.

…

Partial output from fine-tuned model*

* FTed on just 10 “messages”!!



Certainly! Here's a structured workflow to measure CO₂ conversion under three different temperature conditions, typically in a 
laboratory or industrial setting:

### Workflow for Measuring CO₂ Conversion under Varying Temperatures

#### **1. Objectives and Preparation**
 - **Define Objectives**: Determine the specific goals of the experiment (e.g., measure conversion efficiency, product yield).
 - **Materials Needed**:
  - CO₂ source
  - Reactants
  - Catalyst (if applicable)
  - Reaction vessel/ reactor
  - Temperature control system (e.g., baths, heaters)
  - Analytical instruments (GC, IR, etc.) for product analysis
  - Data recording tools (computer software, lab notebooks)

#### **2. Setup**
 - **Select Temperature Points**: Choose three target temperatures for the experiment (e.g., 25°C, 50°C, and 75°C).
 - **Prepare the Reactor**: Set up the reaction vessel with appropriate inlet and outlet systems for gas flow.
 - **Temperature Control Setup**: Configure the temperature control system to maintain stable temperatures.
 - **Calibration**: Calibrate all measuring instruments including temperature sensors, gas flow meters, and analytical devices.

Partial output from regular model (gpt-4o-mini)



Wrappers and tools
• Wrappers and tools ground an agent’s reasoning by attaching it 

to things it can actually do
• Tools = Functions or APIs that an agent is allowed to call

• E.g., search_literature(), run_simulation(), query_database()

• Wrappers = Thin pieces of code that expose those functions to the model in a 
safe, typed, logged way
• Translate between natural-language intentions and concrete function calls

• LangChain: A tool is often a Python function decorated with @tool
• MCP: A tool is something registered as an MCP resource
• In both cases, a tool’s wrapper handles authentication, error catching, 

rate-limiting, logging, or unit conversions around the raw function



Role Example tools Example wrappers
Scout stream_tool, detect_anomaly rate-limit, data-quality check

Planner registry_tool, compose_workflow dependency resolver, 
YAML validator

Operator execution_tool, safety_check permission enforcement, rollback
Analyst analyze_dataset, plot_trend file I/O, provenance logging

Archivist provenance_tool, upload_globus checksum, 
metadata schema enforcement



Governance/planning

• Does  not change what an agent is or how it reasons

• Rather governs when, why, and under what constraints each agent is 
allowed to act



Governance/scheduler/policy
Governance: Rules or meta-prompts describing what agents may do, who can override whom, 
and acceptable behavior. E.g.:
• “Only the Planner may create new workflows”
• “The Operator must request safety clearance before executing a plan”

• “Analyst outputs must be approved by Archivist before archiving”

Scheduler: Determines when each role runs, whether sequentially, in parallel, or conditionally. E.g.:
• Sequential DAG: Scout → Planner → Operator → Analyst → Archivist

• Parallel branches: Planner sends sub-tasks to multiple Operators
• Event-driven: when new data arrives, trigger Analyst

Policy: Dynamic rules (learned or fixed) controlling how agents hand off tasks and resolve conflicts. E.g.:

• If Planner confidence < 0.7 → loop back to Scout for more data
• If Operator returns "error", Planner revises step n
• If Analyst’s uncertainty > 0.2 → re-run expeziment automatically



# More sophisticated execution strategy
while True:
    result = agents["Planner"].act(goal)
    if "error" in result:
        agents["Scout"].act("Collect more data")
    elif "plan" in result:
        agents["Operator"].act(result)
    else:
        break

# Graph 
graph = {
    "Scout": ["Planner"],
    "Planner": ["Operator"],
    "Operator": ["Analyst"],
    "Analyst": ["Archivist"]
}

# Simple execution strategy
for node in topo_sort(graph):
    outputs = agents[node].act(state)
    state.update(outputs)

# LLM-based execution strategy
governor_prompt = """
You are the GOVERNOR agent.
Given the recent actions of all agents, decide the next agent to invoke.
Respond with {"next_agent": "...", "reason": "..."}.
"""



Scheduling with LangGraph

https://langchain-ai.github.io/langgraph/ 

LangGraph provides synchronous / asynchronous control and replayable logs

https://langchain-ai.github.io/langgraph/
https://langchain-ai.github.io/langgraph/
https://langchain-ai.github.io/langgraph/


Scheduling with AutoGen



Approach for each role

Role Prompt conditioning Fine-tune Tool suite
Scout Detect novel signals Optional stream_tool, detect_anomaly
Planner Compose workflows Yes registry_tool, workflow_tool
Operator Execute safely No execution_tool, safety_monitor
Analyst Summarize results Yes analyze_dataset, visualize_tool
Archivist Log provenance No provenance_tool, upload_tool



Axis Prompts Fine-Tuning Wrappers / Tools Governance / Policy
Effort Low High Medium Medium–High

Adaptability High: Edit text 
anytime

Low: Needs 
retraining

Medium: Change 
tool registry

High: Rules and orchestration 
adjustable dynamically

Safety / 
Controllability

Medium: Soft 
constraints

Low: Learned 
weights fixed

High: Explicit 
function boundaries

Very High: Central enforcement of 
sequence, permissions, and policies

Best for
Rapid prototyping 
/ personality 
design

Production 
specialization / 
stable expertise

System integration / 
capability 
separation

Multi-agent coordination / safety 
and accountability

What it defines Who the agent is How it reasons What it can do When and why it acts

Primary levers System prompts, 
examples

Labeled dialog 
pairs, gradual 
updates

Tool APIs, schemas, 
environment access

Workflow graphs, policies, meta-
agent governors

Failure mode if 
misused

Drift or 
inconsistent style

Overfit / rigid 
behavior

Tool errors or 
missing capabilities Deadlocks / over-constrained flows

Cost to iterate Minutes Hours → days Hours Minutes → hours
Human oversight 
needed Moderate High (quality 

data curation) Moderate High (policy design and auditing)

Approaches compared



Combining methods

Layer Technique Purpose
Behavior Prompt templates Define goal, tone, output schema
Knowledge Fine-tuning or RAG Inject domain expertise
Action space Tools / wrappers Limit what the agent can do
Governance Scheduler / policy Control when each agent acts

• Prompts say “behave like an X”
• Fine-tuning makes it become an X
• Tools let it act like an X
• Each layer reduces the cognitive friction between “what you want” and 

“what the model naturally does”



Example code 

Synthetic stream data … 

→ Scout produces “interesting” notes 

→ Planner proposes (mock) workflow with available resources 

→ Operator “submits” the plan and returns a job handle 

→ Analyst “loads” results and computes simple stats 

→ Archivist stores a provenance record and returns a URI

https://github.com/agents4science/agents4science.github.io/tree/main/Software/AgentsExample 

https://github.com/agents4science/agents4science.github.io/tree/main/Software/AgentsExample


# AgentsExample/agents4science/roles/Scout.py







Outline

• Mental models and roles
• Trust boundaries & authority design
• Interaction patterns
• Debugging & steering multi-agent systems
• Evaluation & metrics
• Case studies



Evaluation & metrics

Measure the workflow, not just the model
• Task success: Scientific objective reached? Yes/no + quality
• Human effort: Interaction count, minutes of attention

• Intervention/override rate (and “regret”): Times the human undid an agent action
• Calibration: Brier score on agent confidence vs. outcomes

• Safety incidents / near-misses
• Latency & cost: Queue time, tokens, compute $

• Reproducibility: Can we replay to the same artifact?

• Knowledge carry-over: Does the system perform better on similar tasks over time?



A human-AI cost curve? 
Marginal human minutes vs. marginal scientific gain across autonomy 
settings. Where is the sweet spot?

Region Autonomy style Typical setup Issues

Manual Human designs & 
executes all steps

Traditional lab or 
HPC workflow Slow, inconsistent

Assisted / 
Hybrid

Agents plan & execute 
routine tasks, humans 
validate key decisions

Self-driving lab with 
human-in-the-loop 
checkpoints

Optimal balance of 
throughput, safety, 
and insight

Fully 
autonomous

Agent plans, executes, 
interprets without 
human approval

Full agentic loop 
(e.g., synthetic 
biology automation)

High speed but high 
epistemic/safety risk





Outline

• Mental models and roles
• Trust boundaries & authority design
• Interaction patterns
• Debugging & steering multi-agent systems
• Evaluation & metrics
• Case studies



Two examples

Paper Workflow Reversibility

Augmenting large language 
models with chemistry 
tools, Nature Machine 
Intelligence (2024)

Uses tool-augmented LLM to explore 
literature/databases (PubChem, etc.) 
and propose plausible reagents/ 
synthetic steps as ideas to test

Computational actions 
fully reversible; lab 
actions semi-reversible 
(can rerun)

Autonomous chemical 
research with LLMs—
Nature (2023)

LLM helps generate hypotheses/ 
experiment plans and closes the 
loop with automation; demonstrates 
end-to-end goal→plan→experiment

Planning & reasoning 
fully reversible; lab 
steps semi-reversible 
(can rerun)

https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s41586-023-06792-0
https://www.nature.com/articles/s41586-023-06792-0


https://www.nature.com/articles/s42256-024-00832-8 

“ChemCrow”

https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8


Recall: ReAct (Reason + Act)

Use LLM to generate both reasoning traces and task-specific actions in an 
interleaved manner, allowing for greater synergy between the two: 
• reasoning traces help the model induce, track, and update action 

plans as well as handle exceptions, while 
• actions allow it to interface with and gather additional information 

from external sources such as knowledge bases or environments

They prompt a frozen large language model, PaLM-540B with a few-shot 
in-context examples to generate both domain-specific actions and free-
form language thoughts for task solving

https://arxiv.org/pdf/2210.03629.pdf 

https://arxiv.org/pdf/2210.03629.pdf


https://arxiv.org/pdf/2210.03629.pdf 

ReAct prompts used for Hotpot QA

https://arxiv.org/pdf/2210.03629.pdf


ReAct (Reason + Act) contd

4 prompting methods solving a HotpotQA question. We omit in-context examples in prompt, and 
only show task-solving trajectories generated by model (Act, Thought) and environment (Obs). 



ChemCrow reasoning strategy
• Prompt a LLM (GPT-4 in our experiments) with instructions about the task and desired format 

• LLM is provided with a list of tool names, descriptions of their utility, and details about expected 
input/output

• It is then instructed to answer a user-given prompt, using the tools provided when necessary 

• The model is guided to follow the Thought, Action, Action Input, Observation format, which 
requires it to reason about the current state of the task, consider its relevance to the final goal and 
plan the next steps accordingly, demonstrating its level of understanding

• After the reasoning in the Thought step, the LLM requests a tool (preceded by the keyword ‘Action’) 
and the input for this tool (with the keyword ‘Action Input’)

• The text generation then pauses, and the program attempts to execute the requested function 
using the provided input

• The result is returned to the LLM prepended by the keyword ‘Observation’, and the LLM proceeds 
to the Thought step again. It continues iteratively until the final answer is reached



Implementation with LangChain
This code instantiates a ReAct-style agent:

• “ZeroShot” means no few-shot examples, only prompt-based ReAct scaffolding

• The agent takes the LLM and tools and wraps them in a controller that tracks the 
reasoning/action history

https://github.com/whitead/robust-mrkl 

https://github.com/whitead/robust-mrkl
https://github.com/whitead/robust-mrkl
https://github.com/whitead/robust-mrkl


• RetryAgentExecutor is a LangChain-inspired control loop:
• Sends current conversation (including reasoning and observations) to LLM
• LLM outputs a new Thought + Action
• Executor parses the “Action”, executes the corresponding tool, and adds 

the Observation back to context
• The process repeats until the LLM outputs a “Final Answer”

• Thus, the ReAct loop is realized dynamically:
• LLM (reason) → Action → Observation → repeat → Final Answer
• If the model fails to parse an action correctly, RetryAgentExecutor retries

https://github.com/whitead/robust-mrkl 

https://github.com/whitead/robust-mrkl
https://github.com/whitead/robust-mrkl
https://github.com/whitead/robust-mrkl


ChemCrow 
Prompts

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py 

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py


https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py 

QUESTION_PROMPT = """
Answer the question below using the following tools:

{tool_strings}

Use the tools provided, using the most specific tool available for each action.
Your final answer should contain all information necessary to answer the question and subquestions.

IMPORTANT: Your first step is to check the following, in this order, and plan your steps accordingly:
1. Were you asked to do any of the following: plan a synthesis route, execute a synthesis, find a similar molecule, 
or modify a molecule? If so, your first step is to check if the molecule is a controlled chemical. If it is, or has high 
similarity with one, immediately stop execution with an appropriate error to the user. Do not continue.
2. Does the question involve any molecules? If so, as a first step, check if any are controlled chemicals. If any are, 
include a warning in your final answer.
3. Were you asked to plan a synthesis route? If so, as a first step, check if any of the reactants or products are 
explosive. If any are, include a warning in your final answer.
4. Were you asked to execute a synthesis route? If so, check if any of the reactants or products are explosive. If 
any are, ask the user for permission to continue.
Do not skip these steps.

Question: {input}
"""

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py


SUFFIX = """
Thought: {agent_scratchpad}
"""
FINAL_ANSWER_ACTION = "Final Answer:"

REPHRASE_TEMPLATE = """In this exercise you will assume the role of a scientific assistant. Your task is 
to answer the provided question as best as you can, based on the provided solution draft.
The solution draft follows the format "Thought, Action, Action Input, Observation", where the 'Thought' 
statements describe a reasoning sequence. The rest of the text is information obtained to complement 
the reasoning sequence, and it is 100% accurate.
Your task is to write an answer to the question based on the solution draft, and the following guidelines:
The text should have an educative and assistant-like tone, be accurate, follow the same reasoning 
sequence than the solution draft and explain how any conclusion is reached.
Question: {question}

Solution draft: {agent_ans}

Answer:
"""

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py 

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py


https://www.nature.com/articles/s42256-024-00832-8

An overview of the task-solving process. Using a variety of chemistry-related packages and software, a set of tools 
is created. These tools and a user input are then given to an LLM. The LLM proceeds through an automatic, 
iterative chain-of-thought process, deciding on its path, choice of tools and inputs before coming to a final answer. 
The example shows the synthesis of DEET, a common insect repellent

https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8


Example tool: GetMoleculePrice

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py 

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py


https://www.nature.com/articles/s42256-024-00832-8

Toolsets implemented in ChemCrow: reaction, molecule, safety, search and standard tools

https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8


https://www.nature.com/articles/s42256-024-00832-8

https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8


https://www.nature.com/articles/s42256-024-00832-8

Human–model 
interaction leading 
to the discovery of 
new chromophore
ChemCrow was 
instructed to train a 
machine-learning 
model to help screen 
a library of candidate 
chromophores

https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8


https://www.nature.com/articles/s42256-024-00832-8

Task: Find and synthesize a thiourea organocatalyst which 
accelerates a Diels–Alder reaction.

First, I need to find a thiourea organocatalyst that can 
accelerate the Diels–Alder reaction. I will perform a web 
search to find a suitable catalyst.
Web Search tool: Schreiner’s thiourea catalyst

Now, I will obtain the SMILES.
Name2Smiles tool:
FC(F)(F)c1cc(NC(=S)Nc2cc(C(F)(F)F)cc(C(F)(F)F)c2)cc(C(F)(F)F)c1

I will plan a synthesis for Schreiner’s thiourea catalyst.
SynthesisPlanner tool: detailed synthesis plan

I will execute the synthesis.
SynthesisExecutor tool: successful synthesis

https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8


Four of their evaluation tasks



Comparative performance 
of GPT-4 and ChemCrow 
across a range of tasks.

Per-task preference. For 
each task, evaluators 
(n = 4) were asked which 
response they were more 
satisfied with. Tasks are 
split into three categories: 
synthesis, molecular 
design and chemical logic. 
Tasks are sorted by order 
of difficulty within the 
classes



https://www.nature.com/articles/s42256-024-00832-8

https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8


Safety guidelines 
provided by 
ChemCrow



ChemCrow discussed

• ChemCrow, a tool-augmented LLM agent for chemistry, combines:
• An LLM for reasoning and task decomposition
• A curated set of chemistry-specific tools (e.g., reaction prediction, synthesis 

planning, property lookup)
• An autonomous orchestration layer that sequences tool calls to achieve a goal

• Safety is handled via prompts
• Its human-AI interaction model is simplistic: The user expresses a goal 

(e.g., “synthesize insect repellent”) but ChemCrow does not provide for 
clarification, delegation, mixed-initiative scheduling, etc.



https://doi.org/10.1038/s41586-023-06792-0 

https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0


Autonomous chemical research with LLMs
• Coscientist is a multi-LLM intelligent agent centered on a Planner 

(e.g., a GPT-4 instance) that coordinates four command-modules:
• GOOGLE (web-search agent)
• DOCUMENTATION (retrieval/summarization agent for lab APIs)
• PYTHON (code-execution agent)
• EXPERIMENT (robot-control agent)

• The Planner decides which action to take, invokes the right sub-agent, 
and integrates their observations
• An explicit ReAct-style “reason → act → observe → reason” loop

Examples of the experiments discussed in the text are provided in the Supplementary Information. 
Because of safety concerns, data, code, and prompts will be only fully released after the 
development of US regulations in the field of artificial intelligence and its scientific applications.







Project (see Canvas for definitive info)
• Who: Teams of 1-3
• What: Design, implement, and evaluate one or more agents that 

perform a task of the team’s choice (scientific reasoning, lab planning, 
data transformation, research, etc.). Quantify improvement for 
agentic solution with LLM vs. a non-agentic solution. Document in 
poster and 10-page ACM conference format paper; provide code via 
GitHub. 
• When: November 12: One-page outline. December 3: Peer review of 

draft poster and report. December 10: Poster session. December 11: 
Paper + code. 



Example topics (you can do better!) 
• Agentic RAG for Scientific Literature

• Goal: improve factual citation rate vs baseline
• Metric: % correct citations on held-out QA set

• Lab-Notebook Cleaner
• Goal: reduce data errors and unit inconsistencies
• Metric: % records passing unit-tests vs baseline LLM

• Mini HPC Queue Planner
• Goal: shorter predicted makespan vs FIFO baseline
• Metric: runtime simulation makespan difference (%)

• Autonomous DFT Experiment Planner
• Goal: achieve converged results with fewer runs
• Metric: average failed-job rate

• Scientific Paper Summarizer Agent
• Goal: improve summary coverage and citation faithfulness
• Metric: ROUGE-L and human correctness score



Rubric
Area Pts Notes
Problem framing & 
literature review 20 Clear motivation and 

sources
Experimental design & 
baseline setup 20 Fair comparison, defined 

metric

Implementation quality 20 Readable, reproducible, 
modular agents

Quantitative results & 
analysis 20 Measured improvement + 

ablation

Presentation & report 20 Professional slides + repo 
docs



Things to consider

• What problem will you tackle? 
• How will you compare performance?
• How will you implement agents? LangGraph, Academy, …



Evaluating predictions
• When agents (human or AI) make predictions or recommendations 

with confidence levels, it’s not enough to be accurate: they also need 
to be well-calibrated
• A well-calibrated agent’s stated confidence matches empirical success 

frequency
• Example: If agent says, “I’m 80% sure this catalyst will outperform the baseline,” 

it should be right ~80% of the time when making such statements

• Crucial in science because decisions (e.g., whether to run an experiment) 
depend on trust in the agent’s internal uncertainty estimates



Brier score
• A standard way to quantify calibration for probabilistic predictions
• For binary outcomes (e.g., experiment succeeded vs. failed):

   Brier Score = !
"
∑#$!" 𝑝# − 𝑜# %

• where:
• 𝑁 = number of predictions
• 𝑝" = predicted probability that event 𝑖 succeeds
• 𝑜" = actual outcome (1 if success, 0 if not)

• Mean squared error between predicted probabilities and actual results
• Perfect calibration: Brier = 0.0
• Always wrong or overconfident: Brier is large (max = 1.0)



Brier score example

Trial Agent confidence (p) Outcome (o) (p – o)²
1 0.9 1 0.01
2 0.6 1 0.16
3 0.2 0 0.04
4 0.8 0 0.64

Brier = (0.01 + 0.16 + 0.04 + 0.64)/4 = 0.21



Agent Role Example of “Confidence” Outcome Is … Brier Interpretation

Scout
Probability that anomaly 
corresponds to real 
physical effect

Later validation 
confirms/refutes

Detects exaggerated or 
missed discoveries

Planner Confidence a proposed 
workflow will succeed

Workflow runs 
without abort

Detects optimism bias in 
planning

Operator Confidence that task will 
complete safely No safety violation Tests conservatism of 

operational policy

Analyst Probability a result is 
statistically significant Later validation Measures statistical 

calibration

Archivist Confidence metadata 
correctly linked

Provenance audit 
success Evaluates data hygiene


