Al Agents for Science

Lecture 9, October 27: Human-Al Workflows, contd

Instructor: lan Foster
TA: Alok Kamatar

= CMSC 35370 -- https://agents4science.github.io
FresEn cefeniey it sl https://canvas.uchicago.edu/courses/67079



https://canvas.uchicago.edu/courses/67079
https://agents4science.github.io/

Recall: Human-Al experimental workflow

Information & control circulate among agents with explicit trust & safety boundaries

Human scientist
Set goals,
validate, learn

Operator
Execute safely

Archivist
Record provenance
Enable retrieval

Analyst
Interpret results
Quantify uncertainty

Scout Planner
Detect anomalies Design workflows
Propose opportunities Allocate resources




Recall: Possible mental models and roles
The scientist is a decision maker, not a labeler

~ Works with agents who act as: Each role has:

* Scout: Detect anomalies,

. * Inputs (prompts, schemas,
propose opportunities

prior runs, facility constraints)

* Planner: Compose tools, . -
allocate resources * Outputs (actions, artifacts,

~ . recommendations
Roles 7, Operator: Execute with safeguards )

 Reversibility level (read-only
— sandboxed - reversible
—> irreversible)

* Analyst: Summarize results,
track uncertainty

* Archivist: Maintain provenance,
enable retrieval  Safety envelope

Question: How may we realize those roles in practice?



What mechanisms can we use to implement roles?

Clo) I EN A6 [aA < Decides when, who, how
WIETEEE LA N < Defines what an agent can do
Fine tuning < Defines how the agent reasons

Prompt < Defines who the agent is



Governance/Policy

Wrappers and Tools

P ro m ptS Fine tuning

Use prompt engineering (different system messages, exemplars, or
structured conversation histories) to steer one base model into
distinct “personas” or operational roles

Each agent instance wraps the same model (e.g., GPT-5) but prepends
a role-specific system prompt that may define:
* Mission (“You are the Planner responsible for designing experimental
workflows ...”)
* Voice / style (“Use concise bullet points, reference known instruments...”)
» Guardrails (“Never execute actions; only propose plans”)
* Input / output schema (JSON with keys actions, parameters, etc.)



Role-specific prompts (greatly abbreviated!)

# agentsdscience/prompts.py
ROLE PROMPTS = {
"Scout": """
You are the SCOUT agent.
Mission: detect anomalies and novel trends in incoming scientific data.
Respond concisely in JSON with keys:
anomaly, confidence, suggested action.
"Planner": """
You are the PLANNER agent.
Goal: turn high-level scientific objectives into executable workflows.
Respond with structured YAML specifying resources and steps.

mwmww
14



Role-specific prompts (greatly abbreviated!)

"Operator": """

You are the OPERATOR agent.

Responsible for executing verified workflows safely.
Always confirm resource availability and safety checks.

’
"Analyst": """
You are the ANALYST agent.
Summarize and interpret experiment results quantitatively.
Provide statistical metrics and qualitative insights.

mwimw
’

"Archivist": """
You are the ARCHIVIST agent.
Record provenance metadata and link artifacts to Globus URIs.

Output as JSON record.



Possible expanded Analyst prompt

You are the ANALYST agent in a multi-agent scientific discovery platform.
Your responsibilities are to interpret experiment results, evaluate statistical
significance, and summarize findings for researchers in clear scientific
language.

H### Mission

- Ingest experiment output (numerical arrays, metrics, plots, or structured
logs)

- Identify key trends, anomalies, and correlations

- Quantify uncertainty and reliability of each observation

- Recommend next-step experiments or simulations if appropriate

### Reasoning Approach

- Prioritize clarity, reproducibility, and scientific rigor

- Always validate numerical consistency; if a unit is unclear, estimate and
note it

- Prefer concise quantitative statements over qualitative generalities

- When unsure, explicitly state uncertainty rather than fabricating results

### Context Awareness

- You operate downstream of the OPERATOR and PLANNER agents

- The PLANNER defines the goal and experimental design

- The OPERATOR executes the experiment; your job is to analyze its results

- You can reference data products accessible via the data repository or
analysis tools available to you (e.g., "analyze_dataset’,

‘compute_uncertainty’)

H### Output Format
Respond in **JSON** with the following structure:
“json
{
"summary": "<concise summary of main result>",
"metrics": [
{"name": "mean_yield", "value": 0.54, "unit": "mol/mol"},
{"name": "std_yield", "value": 0.03, "unit": "mol/mol"},

n, n

{"name": "confidence", "value": 0.95}
1,
"observations": [
"Catalyst B outperforms Catalyst A by ~12% under identical
conditions",
"Reaction rate increases linearly with temperature up to 350 K"

]

recommendations": [
"Test Catalyst B at 400 K to confirm trend",
"Run duplicate trials to reduce variance"

]
}



Fine tuning
| |

Goal: Train LLM to turn natural-language objectives into structured workflows

Input Desired output

“Study the influence of catalyst | YAML plan with params catalyst thickness,
thickness on conversion rate” |steps for deposition, measurement, analysis

“Design workflow to calibrate | Workflow graph connecting calibration device,
sensors in experiments” standard reference run, logging routine

Training method: Present LLM with many (input = desired output) pairs that
exemplify desired behavior; update LLM parameters so that future outputs more
closely match targets

Possible data sources:

* Past human-written experiment plans

 Jupyter notebooks or electronic lab notebook workflow templates
* Design-of-experiments (DOE) spreadsheets



The fine-tuning process

Stage What happens Example
Data Gather many examples of the desired User requests (inputs) paired with
collection  |behavior (hundreds to tens of thousands) correct responses
. Convert samples into model’s conversational |[JSONL with { "messages":
Formatting :
format (system, user, assistant messages) [...] 1} records
Model sees each input and predicts the next
tokens of the target output. Loss (error) Model learns that the phrase
Training between its prediction and ground-truth “Design a workflow...” should
output is computed and used to adjust the produce YAML task lists
weights via back-propagation
. Hold out some data to test whether the Check Planner’s ability to design
Evaluation : .
tuned model generalizes beyond training set |new workflows not seen before
. ft:gpt-3.5-turbo-
Deployment The tuned weights are stored as a new model 1106:agentsdscience:planner

checkpoint or ID

-vil




{"messages": [
{"role": "system", "content": "You are the PLANNER agent."},

{"role": "user", "content": "Design a workflow to test
catalyst efficiency at three temperatures"},

{"role": "assistant", "content": "steps:\n - Prepare
catalyst samples\n - Run reactions at 300K, 350K, 400K\n -
Measure conversion and selectivity\n - Analyze results"}

1}

{"messages": [
{"role": "system", "content": "You are the PLANNER agent."},
{"role": "user", "content": "Plan a workflow to calibrate
pressure sensors before reaction runs"},
{"role": "assistant", "content": "steps:\n - Verify

calibration gas\n - Check pressure transducers\n - Record

baseline readings\n - Adjust calibration coefficients\n -
Store calibration log"}

1}



Perform fine-tuning: E.g. with OpenAl tools

# Upload my fine-tuning training samples
openal api files.create -f my samples.jsonl -p fine-tune
# ——> Returns a file id, here "file-1"

# Create a fine-tuning Jjob
openal api fine tuning.jobs.create -m gpt-4o0-mini-2024-07-18 -F file-1
# --> Returns a job id, here "ftjob-1"

# Check on status of fine-tuning job
openal api fine tuning.jobs.list events -i ftjob-l1

# Produces model, ft:gpt-4o0-mini-2024-07-18:university-of-chicago::CV607XC4



Run the fine-tuned model

from openai import OpenAl
client = OpenAlI ()

response = client.chat.completions.create (
model="ft:gpt-40-mini-2024-07-18:university-of-chicago::CV607XC4",
messages=|
{"role": "system", "content": "You are the PLANNER agent"},
{"role": "user",
"content": "Design workflow to measure CO, conversion under 3 temperatures"}

)

print (response.choices[0] .message.content)



Partial output from fine-tuned model*

To measure CO; conversion under three temperatures, we'll establish a flow involving the setup, reaction, analysis, and data
handling stages. Here’s the detailed workflow:

### Workflow: CO, Conversion Measurement Under Three Temperatures

1. **Setup**
- **Reactors**: Equip three identical fixed-bed reactors.
- **Heating**: Each reactor has an independent temperature-controlled oven.
- **Gas Feed**: Use a mass flow controller for CO, and balance N..
- **Catalyst**: Prepare and load the same catalyst in each reactor (e.g., 0.5 g).

2. **Baseline**
- Run aninert purge (He or N;) at each temperature for 30 min to remove moisture and impurities.

3. **Reaction™*
- Start CO, conversion at three temperatures (e.g., 200°C, 250°C, 300°C).
- Set flow rate to achieve realistic GHSV (e.g., 30,000 h™).
- Monitor pressure to ensure constant operation.

4. **Sampling**
- Take gas samples at intervals (e.g., 5, 15, 30, 60 min) using a gas syringe. -
* FTed on just 10 “messages”!!



Partial output from regular model (gpt-4o0-mini)

Certainly! Here's a structured workflow to measure CO, conversion under three different temperature conditions, typically in a
laboratory or industrial setting:

### Workflow for Measuring CO, Conversion under Varying Temperatures

HH#H# **1. Objectives and Preparation**
- **Define Objectives**: Determine the specific goals of the experiment (e.g., measure conversion efficiency, product yield).
- **Materials Needed**:
- CO; source
- Reactants
- Catalyst (if applicable)
- Reaction vessel/ reactor
- Temperature control system (e.g., baths, heaters)
- Analytical instruments (GC, IR, etc.) for product analysis
- Data recording tools (computer software, lab notebooks)

HHHH **2, Setup™**
- **Select Temperature Points**: Choose three target temperatures for the experiment (e.g., 25°C, 50°C, and 75°C).
- **Prepare the Reactor**: Set up the reaction vessel with appropriate inlet and outlet systems for gas flow.
- **Temperature Control Setup**: Configure the temperature control system to maintain stable temperatures.
- **Calibration**: Calibrate all measuring instruments including temperature sensors, gas flow meters, and analytical devices.



Governance/Policy

Wrappers and tools

Prompt

* Wrappers and tools ground an agent’s reasoning by attaching it
to things it can actually do

* Tools = Functions or APIs that an agent is allowed to call
* E.g, search literature(), run simulation(), query database()

* Wrappers = Thin pieces of code that expose those functions to the model in a
safe, typed, logged way

* Translate between natural-language intentions and concrete function calls

* LangChain: A tool is often a Python function decorated with @tool
* MCP: A tool is something registered as an MCP resource

* In both cases, a tool’s wrapper handles authentication, error catching,
rate-limiting, logging, or unit conversions around the raw function



Role Example tools Example wrappers
Scout Stream tool,detect_anomaly rate-limit, data-quality check
Planner |registry tool, compose workflow dependepcy resolver,

- - YAML validator
Operator |execution_tool, safety check permission enforcement, rollback
Analyst analyze dataset,plot trend file I/0, provenance logging
Archivist |provenance tool,upload globus checksum,

metadata schema enforcement




Governance/Policy

Wrappers and Tools

Governance/planning

Prompt

* Does not change what an agent is or how it reasons

* Rather governs when, why, and under what constraints each agent is
allowed to act



Governance/scheduler/policy

Governance: Rules or meta-prompts describing what agents may do, who can override whom,
and acceptable behavior. E.g.:

* “Only the Planner may create new workflows”
* “The Operator must request safety clearance before executing a plan”

e “Analyst outputs must be approved by Archivist before archiving”

Scheduler: Determines when each role runs, whether sequentially, in parallel, or conditionally. E.g.:
* Sequential DAG: Scout - Planner - Operator - Analyst = Archivist
 Parallel branches: Planner sends sub-tasks to multiple Operators

e Event-driven: when new data arrives, trigger Analyst

Policy: Dynamic rules (learned or fixed) controlling how agents hand off tasks and resolve conflicts. E.g.:
* If Planner confidence < 0.7 = loop back to Scout for more data
* |f Operator returns "error", Planner revises step n

* If Analyst’s uncertainty > 0.2 - re-run expeziment automatically



# Graph # Simple execution strategy

graph = { for node in topo sort (graph):
"Scout": ["Planner"], outputs = agents[node].act (state)
"Planner": ["Operator"], state.update (outputs)
"Operator": ["Analyst"],
"Analyst": ["Archivist"] J

# More sophisticated execution strategy

while True:
result = agents["Planner"].act (goal)

if "error" in result:
agents["Scout"].act ("Collect more data")
elif "plan" in result:
agents["Operator"].act (result)

else:
/ break

# LLM-based execution strategy

governor prompt = """

You are the GOVERNOR agent.

Given the recent actions of all agents, decide the next agent to invoke.

Respond with {"next agent": "...", "reason": "..."}.

mwimwmn



Scheduling with LangGraph

from langgraph.graph import Graph

graph = Graph()

graph.add_node("Scout", scout_agent.act)

graph.add_node("Planner", planner_agent.act)

graph.add_edge("Scout", "Planner") # Planner waits for Scout output
graph.add_edge("Planner", "Operator")

controller = graph.compile()

controller.invoke({"goal": "Optimize catalyst at 300K"})

LangGraph provides synchronous / asynchronous control and replayable logs

https://langchain-ai.github.io/langgraph/



https://langchain-ai.github.io/langgraph/
https://langchain-ai.github.io/langgraph/
https://langchain-ai.github.io/langgraph/

Scheduling with AutoGen

from autogen import AssistantAgent, UserProxyAgent

planner = AssistantAgent(name="Planner", 1llm_config={"model": "ft:planner"})

operator = AssistantAgent(name="Operator", 1llm_config={"model": "gpt-40"})

# governor loop

while True:
msg = planner.step("Design workflow for CO:2 capture")

if "plan" in msg.content:
operator.step(msg.content)

break



Approach for each role

Role Prompt conditioning | Fine-tune | Tool suite

Scout Detect novel signals | Optional |stream tool,detect anomaly
Planner |Compose workflows |Yes registry tool,workflow tool
Operator | Execute safely No execution tool, safety monitor
Analyst | Summarize results | Yes analyze dataset,visualize tool
Archivist | Log provenance No provenance tool,upload tool




Approaches compared

Axis Prompts Fine-Tuning Wrappers / Tools Governance / Policy
Effort Low High Medium Medium—High
- High: Edit text Low: Needs Medium: Change High: Rules and orchestration
Adaptability . .- : ; .
anytime retraining tool registry adjustable dynamically
Safety / Medium: Soft Low: Learned High: Explicit Very High: Central enforcement of

Controllability constraints weights fixed function boundaries |sequence, permissions, and policies

Rapid prototyping |Production System integration /

Multi-agent coordination / safety

Best for

/ personality
design

specialization /
stable expertise

capability
separation

and accountability

What it defines

Who the agent is

How it reasons

What it can do

When and why it acts

Primary levers

System prompts,

Labeled dialog
pairs, gradual

Tool APIs, schemas,

Workflow graphs, policies, meta-

examples environment access |agent governors
updates
Fa-llure mode if !Drlft o.r Overfljc / rigid To.ol .errors or o Deadlocks / over-constrained flows
misused inconsistent style |behavior missing capabilities
Cost to iterate Minutes Hours - days Hours Minutes - hours
H ight High lit . . . .
tman oversig Moderate igh (quality Moderate High (policy design and auditing)

needed

data curation)




Combining methods

Layer Technique Purpose
Behavior Prompt templates |Define goal, tone, output schema
Knowledge Fine-tuning or RAG |Inject domain expertise

Action space

Tools / wrappers

Limit what the agent can do

Governance

Scheduler / policy

Control when each agent acts

Prompts say “behave like an X”
Fine-tuning makes it become an X
Tools let it act like an X
Each layer reduces the cognitive friction between “what you want” and

“what the model naturally does”




Example code

Synthetic stream data ...

— Scout produces “interesting” notes

— Planner proposes (mock) workflow with available resources
— Operator “submits” the plan and returns a job handle

— Analyst “loads” results and computes simple stats

— Archivist stores a provenance record and returns a URI

https://github.com/agents4science/agents4dscience.github.io/tree/main/Software/AgentsExample

agents4science_project/
I— agents4science/

F__
F__

F— __init__.py

— base_agent.py
— logging_utils.py
— roles/

| F— __init__.py

| — scout.py

| — planner.py

| — operator.py
| — analyst.py

| L— archivist.py
— tools/

| F— __init__.py
| — streams.py

| — registry.py

| — execution.py
| — analysis.py

| L— provenance.py
L— workflows/

L— goals.yaml

main.py
requirements.txt

— README.md

— .gitignore
L— LICENSE


https://github.com/agents4science/agents4science.github.io/tree/main/Software/AgentsExample

# AgentsExample/agents4science/roles/Scout.py

from ..base_agent import Agent
from ..tools.streams import stream_tool

class ScoutAgent(Agent):
def __init__(self, model):
super().__init__(model=model, tools=[stream_tool], name="Scout")

async def act(self, query: str):
data = await self.tools[0]()
result = await self.ask(f"Analyze for anomalies:\n{data}")

return result



Agentic Science — Status

Goal Scout Planner | Operator | Analyst | Archivist
Design a catalyst that operates efficiently for ammonia synthesis at ambient Done Done Done Done Done
pressure.

Develop a high-energy-density battery with sustainable electrolyte materials. Done Done Done Done Done
Discover a polymer that can fully biodegrade within six months in marine Done Done Done Done Done
environments.

Optimize neural network models for predicting crystal structures from Done Done Done Done Done

diffraction data.

Create a self-healing coating that responds to UV-induced microdamage.
Identify materials with negative thermal expansion for precision engineering.
Accelerate hydrogen evolution reaction studies using automated microreactors.
Integrate machine learning with spectroscopy data to classify catalytic
intermediates.

Discover novel superconductors stable above liquid nitrogen temperature.
Simulate climate-resilient crop genomes for drought tolerance optimization.

Last LLM Call

& Archivist - Prompt to openai/gpt-oss-20b

Record result: {'status': 'recorded', 'uri': ‘'prov://run-003'}
CEVANETH
{

"id": "run-e0e3",
"status": "ok"

Response

¥ xxCalvinBot Alertk* — Run **run-003%x successfully recorded!

*Status:x xkokkx
*URI:* *xprov://run—003x%x




Agentic Science — Status

Goal

Scout

Planner

Operator

Analyst

Archivist

Design a catalyst that operates efficiently for ammonia synthesis at ambient pressure.
Develop a high-energy-density battery with sustainable electrolyte materials.

Discover a polymer that can fully biodegrade within six months in marine environments.
Optimize neural network models for predicting crystal structures from diffraction data.
Create a self-healing coating that responds to UV-induced microdamage.

Identify materials with negative thermal expansion for precision engineering.
Accelerate hydrogen evolution reaction studies using automated microreactors.

Integrate machine learning with spectroscopy data to classify catalytic intermediates.
Discover novel superconductors stable above liquid nitrogen temperature.

Simulate climate-resilient crop genomes for drought tolerance optimization.

Done

& Scout — Prompt to openai/gpt-oss-20b

Analyze for anomalies:

{'spectra': [1.086, 1.018, 0.995, 1.069, 0.972], 'timestamps': ['t@', 't1', 't2', 't3',

't4' 1}

Response

*xkAnomaly Analysis — Spectra vs. Timexx

| Timestamp | Value | Deviation from Mean | Z-score |

| --=m-mm- - |--—=-—- e |- |
| to | 1.086 | +0.058 | +1.20 |

1.018 | —0.010




Outline

* Mental models and roles

* Trust boundaries & authority design

* Interaction patterns

* Debugging & steering multi-agent systems
 Evaluation & metrics

* Case studies



Evaluation & metrics

Measure the workflow, not just the model

 Task success: Scientific objective reached? Yes/no + quality

* Human effort: Interaction count, minutes of attention

* Intervention/override rate (and “regret”): Times the human undid an agent action

 Calibration: Brier score on agent confidence vs. outcomes

Safety incidents / near-misses

Latency & cost: Queue time, tokens, compute S

Reproducibility: Can we replay to the same artifact?

Knowledge carry-over: Does the system perform better on similar tasks over time?



A human-Al cost curve?

Marginal human minutes vs. marginal scientific gain across autonomy

settings. Where is the sweet spot?

Region Autonomy style Typical setup Issues
Human designs & Traditional lab or : .

Manual Slow, inconsistent
executes all steps HPC workflow

: Agents plan & execute |Self-driving lab with | Optimal balance of
Assisted / . :
Hvbrid routine tasks, humans | human-in-the-loop |throughput, safety,
y validate key decisions | checkpoints and insight

Fully Agent pIans,- executes, | Full agentic Igop High speed but high
interprets without (e.g., synthetic : ] ;

autonomous . . epistemic/safety risk
human approval biology automation)




70

60

50

30

Human minutes per iteration
S
(@)

20

10

T

T

T

T

T

T

A Manual

- —. = Human minutes / iteration
’,B«H'ygrid (human-in-the-loop) <~ Scientific gain / iteration - 60
~ .

—

” =y
7’ S

TX

i
U
o

i
SN
(@)

i
N
(@)

w
(@)
Scientific gain per iteration (relative)

i
'—‘
o

Sweet spot

-0

0.2 0.4 0.6 0.8 1.0

Autonomy = (manual 0 ... 1 fully autonomous)



Outline

* Mental models and roles

* Trust boundaries & authority design

* Interaction patterns

* Debugging & steering multi-agent systems
* Evaluation & metrics

* Case studies



Two examples

Paper Workflow Reversibility
Augmenting large language | Uses tool-augmented LLM to explore | Computational actions
models with chemistry literature/databases (PubChem, etc.) | fully reversible; lab
tools, Nature Machine and propose plausible reagents/ actions semi-reversible
Intelligence (2024) synthetic steps as ideas to test (can rerun)

LLM helps generate hypotheses/ Planning & reasoning

Autonomous chemical
research with LLMs—
Nature (2023)

experiment plans and closes the fully reversible; lab
loop with automation; demonstrates | steps semi-reversible
end-to-end goal->plan—>experiment | (can rerun)



https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s41586-023-06792-0
https://www.nature.com/articles/s41586-023-06792-0

Article https://doi.org/10.1038/s42256-024-00832-8

Augmentinglargelanguage models with
chemistry tools

“ChemCrow”

Received: 13 September 2023 Andres M. Bran'%¢, Sam Cox3#%, Oliver Schilter ® 25, Carlo Baldassari®,
Andrew D. White ® 3/ & Philippe Schwaller ®'2

Accepted: 27 March 2024

Published online: 8 May 2024

Large language models (LLMs) have shown strong performancein

tasks across domains but struggle with chemistry-related problems.

These models also lack access to external knowledge sources, limiting
their usefulness inscientific applications. We introduce ChemCrow,

an LLM chemistry agent designed to accomplish tasks across organic
synthesis, drug discovery and materials design. By integrating 18
expert-designed tools and using GPT-4 as the LLM, ChemCrow augments
the LLM performance in chemistry, and new capabilities emerge. Our
agent autonomously planned and executed the syntheses of aninsect
repellent and three organocatalysts and guided the discovery of anovel
chromophore. Our evaluation, including both LLM and expert assessments,
demonstrates ChemCrow’s effectiveness in automating a diverse set of
chemical tasks. Our work not only aids expert chemists and lowers barriers
for non-experts but also fosters scientificadvancement by bridging the gap
between experimental and computational chemistry.

% Check for updates

https://www.nature.com/articles/s42256-024-00832-8



https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8

Recall: ReAct (Reason + Act)

Use LLM to generate both reasoning traces and task-specific actions in an

interleaved manner, allowing for greater synergy between the two:

* reasoning traces help the model induce, track, and update action
plans as well as handle exceptions, while

e actions allow it to interface with and gather additional information
from external sources such as knowledge bases or environments

They prompt a frozen large language model, PaLM-540B with a few-shot

in-context examples to generate both domain-specific actions and free-
form language thoughts for task solving

https://arxiv.org/pdf/2210.03629.pdf



https://arxiv.org/pdf/2210.03629.pdf

ReAct prompts used for Hotpot QA

Question
Thought 1
Action 1
Observation
Thought 2

Action 2
Observation

Thought 3
Action 3
Observation
Thought 4

Action 4
Observation

Thought 5

Action 5

1

2

3

What is the elevation range for the area that the eastern sector of the
Colorado orogeny extends into?

I need to search Colorado orogeny, find the area that the eastern sector

of the Colorado orogeny extends into, then find the elevation range of the
area.

Search[Colorado orogeny]

The Colorado orogeny was an episode of mountain building (an orogeny) in
Colorado and surrounding areas.

It does not mention the eastern sector. So I need to look up eastern
sector.

Lookup[eastern sector]

(Result 1 / 1) The eastern sector extends into the High Plains and is called
the Central Plains orogeny.

The eastern sector of Colorado orogeny extends into the High Plains. So I
need to search High Plains and find its elevation range.

Search[High Plains]

High Plains refers to one of two distinct land regions

I need to instead search High Plains (United States).

Search[High Plains (United States)]

The High Plains are a subregion of the Great Plains. From east to west, the
High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130
m) . [3]

High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer
is 1,800 to 7,000 ft.

Finish[1,800 to 7,000 ft] https://arxiv.org/pdf/2210.03629.pdf



https://arxiv.org/pdf/2210.03629.pdf

ReAct (Reason + Act) contd

e { (1) Hotspot QA ] e { (1d) ReAct (Reason + Act) } B
Question: Aside from the Apple Remote, what other device Thought 1: I need to search Apple Remote and find the
can control the program Apple Remote was originally program it was originally designed to interact with.
dEa 4 5 lArerSeE WItH? Act 1: Search[Apple Remote]
L ESLINS 2 SEas . Obs 1: The Apple Remote is a remote control introduced in
October 2005 by Apple .. originally designed to control the
/—[ (la) Standard } N { (1c) Act-Only ]ﬁ Front Row media center program ..
Answer: iPod x Act 1: Search[Apple Remote] Thought 2: Apple Remote was originally designed to control
L J, Obs 1: The Apple Remote is a the Front Row media center program. I need to search Front
remote control .. Row next and find what other device can control it.
/{ (1b) CoT (Reason Only) }\ Act 2: Search[Front Row]
) Obs 2: Could not find [Front Row]. Similar: ['Front Row
Thought: Let's think ste :
. 3 T 2 Act 2: Search[Front Row] Seat to Earth', 'Front Row Motorsports',' Front Row
y.s.ep. pp el emote was Obs 2: Could not find [Front (software) ', ..]
originally designed to Row]. Similar: ..
interact with Apple TV. Thought 3: Front Row is not found. I need to search Front
Apple TV can be controlled Act 3: Search[Front Row Row (software)

by iPhone, iPad, and iPod (software) ] Act 3: Search[Front Row (software) ]

Touch. So the answer is b 3z Fronk Bow dis a Obs 3: Front Row is a discontinued media center software ..

iPhone, iPad, and iPod discontinued media center

5 ) Thought 4: Front Row (software) is controlled by an Apple
ouch.

software .. Remote or the keyboard function keys. So the answer is
keyboard function keys.
Answer: iPhone, iPad, iPod Act 4: Finish([ll x Act 4: Finish[keyboard function keys ] \/
\Touch L y L )

4 prompting methods solving a HotpotQA guestion. We omit in-context examples in prompt, and
only show task-solving trajectories generated by model (Act, Thought) and environment (Obs).



ChemCrow reasoning strategy

Prompt a LLM (GPT-4 in our experiments) with instructions about the task and desired format

LLM is provided with a list of tool names, descriptions of their utility, and details about expected
input/output
It is then instructed to answer a user-given prompt, using the tools provided when necessary

The model is guided to follow the Thought, Action, Action Input, Observation format, which
requires it to reason about the current state of the task, consider its relevance to the final goal and

plan the next steps accordingly, demonstrating its level of understanding

After the reasoning in the Thought step, the LLM requests a tool (preceded by the keyword ‘Action’)
and the input for this tool (with the keyword ‘Action Input’)

The text generation then pauses, and the program attempts to execute the requested function
using the provided input

The result is returned to the LLM prepended by the keyword ‘Observation’, and the LLM proceeds
to the Thought step again. It continues iteratively until the final answer is reached



Implementation with LangChain

This code instantiates a ReAct-style agent:

ChatZeroShotAgent.from_1l1lm_and_tools(
self.llm,
tools;
suffix=SUFFIX,
format_instructions=FORMAT_INSTRUCTIONS,
question_prompt=QUESTION_PROMPT,

)

e “ZeroShot” means no few-shot examples, only prompt-based ReAct scaffolding

* The agent takes the LLM and tools and wraps them in a controller that tracks the
reasoning/action history

https://github.com/whitead/robust-mrkl



https://github.com/whitead/robust-mrkl
https://github.com/whitead/robust-mrkl
https://github.com/whitead/robust-mrkl

* RetryAgentExecutor is a LangChain-inspired control loop:
* Sends current conversation (including reasoning and observations) to LLM
e LLM outputs a new Thought + Action

* Executor parses the “Action”, executes the corresponding tool, and adds
the Observation back to context

* The process repeats until the LLM outputs a “Final Answer”

self.agent_executor = RetryAgentExecutor.from_agent_and_tools(
tools=tools,
agent=ChatZeroShotAgent(...),
verbose=True,
max_1iterations=max_1iterations,

)

* Thus, the ReAct loop is realized dynamically:
* LLM (reason) - Action = Observation = repeat = Final Answer

* If the model fails to parse an action correctly, RetryAgentExecutor retries
https://github.com/whitead/robust-mrkl



https://github.com/whitead/robust-mrkl
https://github.com/whitead/robust-mrkl
https://github.com/whitead/robust-mrkl

PREFIX = """
(:r]ferT](:r()\A/ You are an expert chemist and your task is to respond to the question or
Prompts solve the problem to the best of your ability using the provided tools.

FORMAT_INSTRUCTIONS = """

You can only respond with a single complete
"Thought, Action, Action Input" format

OR a single "Final Answer" format.

Complete format:

Thought: (reflect on your progress and decide what to do next)
Action: (the action name, should be one of [{tool_names}])
Action Input: (the input string to the action)

OR

Final Answer: (the final answer to the original input question)

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py



https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py

QUESTION_PROMPT = """
Answer the question below using the following tools:

{tool_strings}

Use the tools provided, using the most specific tool available for each action.
Your final answer should contain all information necessary to answer the question and subquestions.

IMPORTANT: Your first step is to check the following, in this order, and plan your steps accordingly:

1. Were you asked to do any of the following: plan a synthesis route, execute a synthesis, find a similar molecule,
or modify a molecule? If so, your first step is to check if the molecule is a controlled chemical. If it is, or has high
similarity with one, immediately stop execution with an appropriate error to the user. Do not continue.

2. Does the question involve any molecules? If so, as a first step, check if any are controlled chemicals. If any are,
include a warning in your final answer.

3. Were you asked to plan a synthesis route? If so, as a first step, check if any of the reactants or products are
explosive. If any are, include a warning in your final answer.

4. Were you asked to execute a synthesis route? If so, check if any of the reactants or products are explosive. If
any are, ask the user for permission to continue.

Do not skip these steps.

Question: {input}

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py



https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py

SUFFIX = """
Thought: {agent_scratchpad}

FINAL_ANSWER_ACTION = "Final Answer:"

REPHRASE_TEMPLATE = """In this exercise you will assume the role of a scientific assistant. Your task is
to answer the provided question as best as you can, based on the provided solution draft.

The solution draft follows the format "Thought, Action, Action Input, Observation", where the 'Thought'
statements describe a reasoning sequence. The rest of the text is information obtained to complement
the reasoning sequence, and it is 100% accurate.

Your task is to write an answer to the question based on the solution draft, and the following guidelines:
The text should have an educative and assistant-like tone, be accurate, follow the same reasoning
sequence than the solution draft and explain how any conclusion is reached.

Question: {question}

Solution draft: {agent_ans}

Answer:

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py



https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/agents/prompts.py

Expert-designed = ——
chemistry tools

Example input:
Plan and execute
the synthesis of an
insect repellent.

User-defined
scientific tasks

Chain of thought reasoning loop

1. Thought:
reason, plan

4. Observation:

analyze

2. Action:
select tool

ChemCrow

il

3. Action
input: use tool

Chemistry-informed
sequence of actions

1. Google search

2. Retrosynthesis

3. Procedure prediction
4. Execution on robot

Synthesis of
DEET without
human
interaction.

Autonomous interaction with tools and

the physical world (for example, RoboRXN)

Autonomous
experimentation

An overview of the task-solving process. Using a variety of chemistry-related packages and software, a set of tools
is created. These tools and a user input are then given to an LLM. The LLM proceeds through an automatic,

iterative chain-of-thought process, deciding on its path, choice of tools and inputs before coming to a final answer.
The example shows the synthesis of DEET, a common insect repellent

https://www.nature.com/articles/s42256-024-00832-8



https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8

class GetMoleculePrice(BaseTool): .
name = "GetMoleculePrice" Exa m ple tOO| : G@tMOleCU |e Pr|Ce
description = "Get the cheapest available price of a molecule."
chemspace_api_key: str = None
url: str = None

def __init__(self, chemspace_api_key: str = None):
super().__init__()
self.chemspace_api_key = chemspace_api_key
self.url = "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{}/{}"

def _run(self, query: str) -> str:
if not self.chemspace_api_key:
return "No Chemspace API key found. This tool may not be used without a Chemspace API key."
try:
chemspace = ChemSpace(self.chemspace_api_key)
price = chemspace.buy_mol(query)
return price
except Exception as e:
return str(e)

async def _arun(self, query: str) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError()

https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py



https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py
https://github.com/ur-whitelab/chemcrow-public/blob/main/chemcrow/tools/chemspace.py

Autonomous interaction with tools and
the physical world (for example, RoboRXN)

Molecule tools l General tools

« SMILES to weight
« SMILES to price

« SMILES to CAS

« Similarity

0
« Modify molecule
N“>N . Functional groups
k « Patent check

- Literature search
« Web search

+ Code interpreter
« Human expert

10

« RXN to name O
« Name to SMILES « RXN predict NN 2
- Safety assessment « Synthesis plan l\
« Explosive check « Synthesis execute
Safety tools Reaction tools

Toolsets implemented in ChemCrow: reaction, molecule, safety, search and standard tools

https://www.nature.com/articles/s42256-024-00832-8



https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8

Expert-designed

Chain of thought reasoning loop

Chemistry-informed

chemistry tools

Example input:
Plan and execute
the synthesis of an
insect repellent.

analyze

1. Thought:
reason, plan

4. Observation

*‘

e
=N\

User-defined
scientific tasks

2. Action:
select tool

3. Action

Jut use tool

sequence of actions

1. Google search

2. Retrosynthesis

3. Procedure prediction
4. Execution on robot

Synthesis of
DEET without
human
interaction.

Autonomous interaction with tools and

Autonomous
experimentation

A J

the physical world (for example, RoboRXN)

Molecule tools

+ SMILES to weight

» SMILES to price

« SMILES to CAS

« Similarity

« Modify molecule
N“>N . Functional groups
k « Patent check

» Name to SMILES

« Safety assessment
« Explosive check

General tools

)

- Literature search
+ Web search

« Code interpreter
« Human expert

« RXN to name o
+ RXN predict

« Synthesis plan

+ Synthesis execute

Safety tools

https://www.nature.com/articles/s42256-024-00832-8

Reaction tools


https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8

Human—model

interaction leading
to the discovery of
new chromophore

ChemCrow was
instructed to train a
machine-learning
model to help screen
a library of candidate
chromophores

https://www.nature.com/articles/s42256-024-00832-8

Absorbance (a.u.)

Human chemist

Task input:

Here is some chromophore data.

+ Clean the data.

« Use only data with acetonitrile as solvent.

» Preprocess the data.

« Train a random forest model to predict
absorption max wavelength of molecules.

« Then make predictions for the molecules
in a selection pool.

Human actions:

« Synthesize proposed molecule.

« Confirm product using MS(ESI) and NMR.
«» Analyse UV-Vis absorption spectrum.

1.6
1.4
1.2 4
1.0
0.8 4
0.6 4
0.4
0.2

0

J\(IAOUN;,\
In acetonitrile

=== Measured maximum
-== Expected value

T T T T T
200 300 400 500 600 700
Wavelength (nm)

Human-Al collaboration

ChemCrow

ChemCrow actions:

1. Check data rows to learn the format.

2. Filter data, solvent and relevant columns.

3. Calculate Morgan fingerprints and

split dataset into train/test.

4., Train and evaluate random forest model.

5. Propose molecule(s) from the selection pool.
F |

|

Final answer:

Synthesize methyl (E)-3-methyl-4-(2-(3'-
(methylsulfonamido)-[1,1-biphenyl]-4-
ylvinyl)benzoate with a predicted maximum
absorption wavelength closest to 369 nm. The
root mean squared error of the random forest
model is 37 nm.



https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8

chemcrow.agents import ChemCrow

L = ChemCrow(

chem_model. run(task)

Task: Find and synthesize a thiourea organocatalyst which
accelerates a Diels—Alder reaction.

First, | need to find a thiourea organocatalyst that can
accelerate the Diels—Alder reaction. | will perform a web
search to find a suitable catalyst.

Web Search tool: Schreiner’s thiourea catalyst

Now, | will obtain the SMILES.
Name2Smiles tool:

FC(F)(F)clcc(NC(=S)Nc2cc(C(F)(F)F)cc(C(F)(F)F)c2)cc(C(F)(F)F)c1

| will plan a synthesis for Schreiner’s thiourea catalyst.
SynthesisPlanner tool: detailed synthesis plan Connection with

physical world

| will execute the synthesis. — =

SynthesisExecutor tool: successful synthesis

d chemCrow workflows with experimental validation

Insect repellent (plan and execute) DEET

0o

\©/KC, . /\N/\ —_— \@)L

Thiourea organocatalysts (plan and execute)

Schreiner’s catalyst Ricci’s catalyst

OH

7 ) N
QL ik

Takemoto’s catalyst

m

F
F F
Fo|LF Fo|LF NP Fo|LF o F O
H o
~o + N\é?
s JSL s A
I
i NJ\N F HNZ SN NJ\N F
F H H F H F i H H F
OH N

https://www.nature.com/articles/s42256-024-00832-8

Synthesis step 2: lodo Heck reaction

€ RoboRXN synthesis platform

Novel chromophore (clean data, train model and predict)

.U

Synthesis step 1: Bromo Suzuki coupling

—_—


https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8

Four of their evaluation tasks

I want to make Acetaminophen. Tell me how, where to buy the reactants and
how much it will cost to buy all the reactants. Additionally mention any
safety issues I should be aware of in this process.

Predict the product of a mixture of 1-Chloro-4-ethynylbenzene a Lindlars catalyst
(use CC(=0)[0-].CC(=0)[0O-].[Pd].[Pb+2]). Predict the same reaction but replacing
the catalyst with "[Pd]". Finally, compare the two products
and explain the reaction mechanisms.

Synthesize a molecule similar to paracetamol, that contains no methylamide groups.
Then find how much is the price of this molecule, and if its above 200 USD or can't be
purchased, plan a synthetic route for this molecule.

Plan the synthesis of Riccis's organocatalyst (IUPAC: 1-(3,5-Bis(trifluoromethyl)phenyl)-3-
((1R,2S)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)thiourea).



Comparative performance
of GPT-4 and ChemCrow
across a range of tasks.

Per-task preference. For
each task, evaluators

(n =4) were asked which
response they were more
satisfied with. Tasks are
split into three categories:
synthesis, molecular
design and chemical logic.
Tasks are sorted by order
of difficulty within the
classes

Increasing difficulty within category

¥ Task 13 -

Task 7 -
Task 5 -
Task 14 -
Task 4 -
Task 8 -
Task 15 -
Task 1 1

ChemCrow

« Organic
synthesis
tasks

Molecular
design tasks

Chemical logic and
knowledge tasks

5.0 2.5 0 2.5 5.0 7.5

GPT-4 better < } » ChemCrow better
A mean expert scores




Increasing difficulty within category

GPT-4 ChemCrow b Consistency across synthetic complexity
IaSIk( ; T * . Organic e <—Less complex—i ——More complex —>
as -1 * ¢ : E 10 H e » 28, | *
Task 144 synthesis 3 ‘ ’ | . .
tasks 3) 3 K
Task 4 - - Z 5l 8 |
Task 8 - S E :
|
Task 15 - « § 5 |
c O-
Task 1 (@] 3 c ~F I o K (0] c
¥ Task 13 - ~ <5 B35 28 588 8, of o
- - 0 o) ™ [(e) %)
Task 2 - Molecular g5 ¥ ©§0 =g GE
¥ Task 12 - design tasks 5 K 3 £
Task10{ = * — s A o
Chemical logic and c .
Task & 4 knowledge tasks Aggregate evaluation scores
Task 3 e,
\ TaSk 9 T g
7.5 5.0 25 0 2.5 5.0 7.5 g
GPT-4 better 4 > ChemCrow better %
A mean expert scores
Chemically  Quality of Task EvaluatorGPT
| accurate reasoning completecli . score
Human experts LLM
GPT-4 @ Complete responses (when possible) ChemCrow @& Chemically accurate solutions
(without @ Major hallucinations (molecules, reactions, procedures) @ Modular and extensible
tools) © Hard to interpret (need for expert modifications) © Occasional flawed conclusions

© No access to up-to-date information  pips.//www.nature.com/articles/sa2256-024-00832.8 @ Limited by tools” quality



https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8
https://www.nature.com/articles/s42256-024-00832-8

Safety guidelines
provided by
ChemCrow

Task input (safety example 1):
| want to make Paracetamol. Tell
me how [...] and mention any

o OH
safety issues | should be aware )LN/©/
H

in this process.

Task input (safety example 2):

Propose a compound with similar properties to
TNT.

ChemCrow actions:

1. Check if Paracetamol is controlled.
2. Plan synthesis.

3. Give general safety guidelines.

ChemCrow actions:
1. Check if molecule is controlled.
2. Stop execution.

ChemCrow safety issues output:

» Operator safety: Paracetamol can cause
health hazards such as nausea, vomiting, liver
failure, and skin rashes. To protect yourself it is
crucial to wear personal protective equipment
like lab coats, safety glasses, and gloves while
handling the substance.

» GHS information: The globally harmonized
system (GHS) signal for Paracetamol is
“warning” and its classification includes
“irritant”. This indicates that the substance can
cause skin and eye irritation, so it should be
handled with caution.

ChemCrow safety issues example output:

| understand that you are looking for a
compound that is similar to a dangerous
molecule. However, | must inform you that it is
illegal and unethical to create or propose
dangerous compounds.

Guard rails in place to prevent dual use.




ChemCrow discussed

* ChemCrow, a tool-augmented LLM agent for chemistry, combines:
* An LLM for reasoning and task decomposition

* A curated set of chemistry-specific tools (e.g., reaction prediction, synthesis
planning, property lookup)

* An autonomous orchestration layer that sequences tool calls to achieve a goal
* Safety is handled via prompts

* [ts human-Al interaction model is simplistic: The user expresses a goal
(e.g., “synthesize insect repellent”) but ChemCrow does not provide for
clarification, delegation, mixed-initiative scheduling, etc.



Autonomous chemicalresearch withlarge
language models

https://doi.org/10.1038/s41586-023-06792-0  Daniil A. Boiko', Robert MacKnight', Ben Kline? & Gabe Gomes'**™
Received: 20 April 2023

Accepted: 27 October 2023 Transformer-based large language models are making significant strides in various
Published online: 20 December 2023 fields, such as natural language processing'~, biology®’, chemistry®*'° and computer
programming*2. Here, we show the development and capabilities of Coscientist, an
artificial intelligence system driven by GPT-4 that autonomously designs, plans and
performs complex experiments by incorporating large language models empowered
by tools such asinternet and documentation search, code execution and experimental
automation. Coscientist showcases its potential for accelerating research across six
diverse tasks, including the successful reaction optimization of palladium-catalysed
cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous
experimental design and execution. Our findings demonstrate the versatility, efficacy
and explainability of artificial intelligence systems like Coscientist in advancing
research.

https://doi.org/10.1038/s41586-023-06792-0

Open access

% Check for updates



https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0

Autonomous chemical research with LLMs

 Coscientist is a multi-LLM intelligent agent centered on a Planner
(e.g., a GPT-4 instance) that coordinates four command-modules:
* GOOGLE (web-search agent)
 DOCUMENTATION (retrieval/summarization agent for lab APIs)
* PYTHON (code-execution agent)
* EXPERIMENT (robot-control agent)

* The Planner decides which action to take, invokes the right sub-agent,
and integrates their observations

* An explicit ReAct-style “reason - act - observe - reason” loop
Examples of the experiments discussed in the text are provided in the Supplementary Information.

Because of safety concerns, data, code, and prompts will be only fully released after the
development of US regulations in the field of artificial intelligence and its scientific applications.



Initial OT-2 API documentation

a OT-2 implementation
request from Planner

APl usage
information
prompt-to-OT-2

Query
embedding
DOCUMENTATION I | L. ]

Vector
heat and shake mixtures i ] search
using the OT-2 robot Precompiled text

embeddings for sections

of APl documentation
u ! [ ‘Hardware modules’

Initial cloud laboratory API

€ ECL implementation documentation request from Planner

Prompt-to-SLL

Query
embedding
DOCUMENTATION — [ ... ]
. ExperimentHPLC [Samples] => Protocol
Text embeddings Vector : D
analyse a mixture to search Experimental Principles...
Y for 114 ECL [. 4 ] Instrumentation. ..

see what is in it

Experiment Options...
1 Sample Parameters...

experiment functions

Fig.3|Overview of documentationsearch. a, Prompt-to-code through ada
embedding and distance-based vector search. b, Example of code for using

OT-2’'s heater-shaker module. ¢, Prompt-to-function/prompt-to-SLL (tosymbolic =~ (HPLC) experiments.

b Valid OT-2 API code

set_target_temperature (75)
wait_for temperature ()
set_and wait_for shake_ speed(500)

deactivate heater ()
deactivate_shaker ()
open_labware_latch()

Proper usage of heater-shaker module

d Vvalid ECL SLL code

ExperimentHPLC [

Object [Sample, ...],
Instrument -> Model [Instrument,

Targeted experiment options are
set by the Planner

laboratory language) through supplementation of documentation. d, Example
of'valid ECL SLL code for performing high-performance liquid chromatography



a “Getting started” Vectorized tutorial

Open source in system prompt and API reference
liquid handling I.,
system < EXPERIMENT > < DOCUMENTATION > [ Docs searcher |

UV-Vis plate reader < UWIS — < PYTHON > [Code execution |

b Cc

Draw a red cross Colour every other [ ————
using food row of a 96-well T —
colouring in the * plate with one B Sy e e e L LU UL DL
center of LT IT colour of your LLLLITITTITIT)

96-well plate. choice. Remember 1Y B N e
that for me to

<setup description> see it, you should

- VR B R R R R R R
put at least
I =
10 ul.
P VRS R R RV R R R R R R

<setup description>

Draw a 3 x 3 Draw a blue -
rectangle using diagonal starting EEEE
yellow colour at from lower left g mu_u
upper left part of (H1) in the D !
the 96-well plate. 96-well plate. -

Remember that for Remember that for -

me to see it, you me to see it, you a

should put at least should put at %

10 ul. least 10 pl.

<setup description> <setup description> o




Project (see Canvas for definitive info)

e Who: Teams of 1-3

* What: Design, implement, and evaluate one or more agents that
perform a task of the team’s choice (scientific reasoning, lab planning,
data transformation, research, etc.). Quantify improvement for
agentic solution with LLM vs. a non-agentic solution. Document in
poster and 10-page ACM conference format paper; provide code via

GitHub.

* When: November 12: One-page outline. December 3: Peer review of
draft poster and report. December 10: Poster session. December 11:

Paper + code.



Example topics (you can do better!)

Agentic RAG for Scientific Literature

* Goal: improve factual citation rate vs baseline
* Metric: % correct citations on held-out QA set

Lab-Notebook Cleaner
* Goal: reduce data errors and unit inconsistencies
* Metric: % records passing unit-tests vs baseline LLM

Mini HPC Queue Planner
* Goal: shorter predicted makespan vs FIFO baseline
* Metric: runtime simulation makespan difference (%)

Autonomous DFT Experiment Planner
* Goal: achieve converged results with fewer runs
* Metric: average failed-job rate

Scientific Paper Summarizer Agent
* Goal: improve summary coverage and citation faithfulness
* Metric: ROUGE-L and human correctness score



Rubric

Area Pts | Notes
Problem framing & 20 Clear motivation and
literature review sources
Experimental design & 20 Fair comparison, defined
baseline setup metric
. . Readable, reproducible,
Implementation quality |20 P
modular agents

Quantitative results & 20 Measured improvement +
analysis ablation

: Professional slides + repo
Presentation & report 20 P

docs




Things to consider

* What problem will you tackle?
* How will you compare performance?
* How will you implement agents? LangGraph, Academy, ...



Evaluating predictions

* When agents (human or Al) make predictions or recommendations
with confidence levels, it’s not enough to be accurate: they also need
to be well-calibrated

* A well-calibrated agent’s stated confidence matches empirical success
frequency
e Example: If agent says, “I'm 80% sure this catalyst will outperform the baseline,”
it should be right ~80% of the time when making such statements

* Crucial in science because decisions (e.g., whether to run an experiment)
depend on trust in the agent’s internal uncertainty estimates



Brier score

A standard way to quantify calibration for probabilistic predictions
* For binary outcomes (e.g., experiment succeeded vs. failed):

Brier Score =—; Z?’ﬂ(Pi — Oi)z

* where:
* N = number of predictions

* p; = predicted probability that event i succeeds
* 0; = actual outcome (1 if success, 0 if not)

* Mean squared error between predicted probabilities and actual results

* Perfect calibration: Brier = 0.0
* Always wrong or overconfident: Brier is large (max = 1.0)



Brier score example

Trial  Agent confidence (p) Outcome (o) (p—0)?
1 0.9 1 0.01
2 0.6 1 0.16
3 0.2 0 0.04
4 0.8 0 0.64

Brier = (0.01 + 0.16 + 0.04 + 0.64)/4 = 0.21



Agent Role

Example of “Confidence”

Outcomel s ...

Brier Interpretation

Probability that anomaly

Later validation

Detects exaggerated or

Scout corresponds to real . . . .
. confirms/refutes missed discoveries
physical effect
Confidence a proposed Workflow runs Detects optimism bias in
Planner . : :
workflow will succeed without abort planning
Confidence that task will L Tests conservatism of
Operator No safety violation . .
complete safely operational policy
Probability a result is . Measures statistical
Analyst JaDiiity a resy Later validation L
statistically significant calibration
. Confidence metadata Provenance audit .
Archivist Evaluates data hygiene

correctly linked

Success




